/* * Copyright 2011, Blender Foundation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "device.h" #include "light.h" #include "mesh.h" #include "curves.h" #include "object.h" #include "scene.h" #include "util_foreach.h" #include "util_map.h" #include "util_progress.h" #include "util_vector.h" CCL_NAMESPACE_BEGIN /* Object */ Object::Object() { name = ""; mesh = NULL; tfm = transform_identity(); visibility = ~0; random_id = 0; pass_id = 0; particle_id = 0; bounds = BoundBox::empty; motion.pre = transform_identity(); motion.post = transform_identity(); use_motion = false; use_holdout = false; curverender = false; } Object::~Object() { } void Object::compute_bounds(bool motion_blur, float shuttertime) { BoundBox mbounds = mesh->bounds; if(motion_blur && use_motion) { DecompMotionTransform decomp; transform_motion_decompose(&decomp, &motion, &tfm); bounds = BoundBox::empty; /* todo: this is really terrible. according to pbrt there is a better * way to find this iteratively, but did not find implementation yet * or try to implement myself */ float start_t = 0.5f - shuttertime*0.25f; float end_t = 0.5f + shuttertime*0.25f; for(float t = start_t; t < end_t; t += (1.0f/128.0f)*shuttertime) { Transform ttfm; transform_motion_interpolate(&ttfm, &decomp, t); bounds.grow(mbounds.transformed(&ttfm)); } } else bounds = mbounds.transformed(&tfm); } void Object::apply_transform() { if(!mesh || tfm == transform_identity()) return; for(size_t i = 0; i < mesh->verts.size(); i++) mesh->verts[i] = transform_point(&tfm, mesh->verts[i]); for(size_t i = 0; i < mesh->curve_keys.size(); i++) mesh->curve_keys[i].co = transform_point(&tfm, mesh->curve_keys[i].co); Attribute *attr_tangent = mesh->curve_attributes.find(ATTR_STD_CURVE_TANGENT); Attribute *attr_fN = mesh->attributes.find(ATTR_STD_FACE_NORMAL); Attribute *attr_vN = mesh->attributes.find(ATTR_STD_VERTEX_NORMAL); Transform ntfm = transform_transpose(transform_inverse(tfm)); /* we keep normals pointing in same direction on negative scale, notify * mesh about this in it (re)calculates normals */ if(transform_negative_scale(tfm)) mesh->transform_negative_scaled = true; if(attr_fN) { float3 *fN = attr_fN->data_float3(); for(size_t i = 0; i < mesh->triangles.size(); i++) fN[i] = transform_direction(&ntfm, fN[i]); } if(attr_vN) { float3 *vN = attr_vN->data_float3(); for(size_t i = 0; i < mesh->verts.size(); i++) vN[i] = transform_direction(&ntfm, vN[i]); } if(attr_tangent) { float3 *tangent = attr_tangent->data_float3(); for(size_t i = 0; i < mesh->curve_keys.size(); i++) tangent[i] = transform_direction(&tfm, tangent[i]); } if(bounds.valid()) { mesh->compute_bounds(); compute_bounds(false, 0.0f); } /* tfm is not reset to identity, all code that uses it needs to check the transform_applied boolean */ } void Object::tag_update(Scene *scene) { if(mesh) { if(mesh->transform_applied) mesh->need_update = true; foreach(uint sindex, mesh->used_shaders) { Shader *shader = scene->shaders[sindex]; if(shader->sample_as_light && shader->has_surface_emission) scene->light_manager->need_update = true; } } scene->curve_system_manager->need_update = true; scene->mesh_manager->need_update = true; scene->object_manager->need_update = true; } /* Object Manager */ ObjectManager::ObjectManager() { need_update = true; } ObjectManager::~ObjectManager() { } void ObjectManager::device_update_transforms(Device *device, DeviceScene *dscene, Scene *scene, uint *object_flag, Progress& progress) { float4 *objects; float4 *objects_vector = NULL; int i = 0; map surface_area_map; Scene::MotionType need_motion = scene->need_motion(device->info.advanced_shading); bool have_motion = false; objects = dscene->objects.resize(OBJECT_SIZE*scene->objects.size()); if(need_motion == Scene::MOTION_PASS) objects_vector = dscene->objects_vector.resize(OBJECT_VECTOR_SIZE*scene->objects.size()); foreach(Object *ob, scene->objects) { Mesh *mesh = ob->mesh; uint flag = 0; /* compute transformations */ Transform tfm = ob->tfm; Transform itfm = transform_inverse(tfm); /* compute surface area. for uniform scale we can do avoid the many * transform calls and share computation for instances */ /* todo: correct for displacement, and move to a better place */ float uniform_scale; float surface_area = 0.0f; float pass_id = ob->pass_id; float random_number = (float)ob->random_id * (1.0f/(float)0xFFFFFFFF); if(transform_uniform_scale(tfm, uniform_scale)) { map::iterator it = surface_area_map.find(mesh); if(it == surface_area_map.end()) { foreach(Mesh::Triangle& t, mesh->triangles) { float3 p1 = mesh->verts[t.v[0]]; float3 p2 = mesh->verts[t.v[1]]; float3 p3 = mesh->verts[t.v[2]]; surface_area += triangle_area(p1, p2, p3); } foreach(Mesh::Curve& curve, mesh->curves) { int first_key = curve.first_key; for(int i = 0; i < curve.num_segments(); i++) { float3 p1 = mesh->curve_keys[first_key + i].co; float r1 = mesh->curve_keys[first_key + i].radius; float3 p2 = mesh->curve_keys[first_key + i + 1].co; float r2 = mesh->curve_keys[first_key + i + 1].radius; /* currently ignores segment overlaps*/ surface_area += M_PI_F *(r1 + r2) * len(p1 - p2); } } surface_area_map[mesh] = surface_area; } else surface_area = it->second; surface_area *= uniform_scale; } else { foreach(Mesh::Triangle& t, mesh->triangles) { float3 p1 = transform_point(&tfm, mesh->verts[t.v[0]]); float3 p2 = transform_point(&tfm, mesh->verts[t.v[1]]); float3 p3 = transform_point(&tfm, mesh->verts[t.v[2]]); surface_area += triangle_area(p1, p2, p3); } foreach(Mesh::Curve& curve, mesh->curves) { int first_key = curve.first_key; for(int i = 0; i < curve.num_segments(); i++) { float3 p1 = mesh->curve_keys[first_key + i].co; float r1 = mesh->curve_keys[first_key + i].radius; float3 p2 = mesh->curve_keys[first_key + i + 1].co; float r2 = mesh->curve_keys[first_key + i + 1].radius; p1 = transform_point(&tfm, p1); p2 = transform_point(&tfm, p2); /* currently ignores segment overlaps*/ surface_area += M_PI_F *(r1 + r2) * len(p1 - p2); } } } /* pack in texture */ int offset = i*OBJECT_SIZE; memcpy(&objects[offset], &tfm, sizeof(float4)*3); memcpy(&objects[offset+4], &itfm, sizeof(float4)*3); objects[offset+8] = make_float4(surface_area, pass_id, random_number, __int_as_float(ob->particle_id)); if(need_motion == Scene::MOTION_PASS) { /* motion transformations, is world/object space depending if mesh * comes with deformed position in object space, or if we transform * the shading point in world space */ Transform mtfm_pre = ob->motion.pre; Transform mtfm_post = ob->motion.post; if(!mesh->attributes.find(ATTR_STD_MOTION_PRE)) mtfm_pre = mtfm_pre * itfm; if(!mesh->attributes.find(ATTR_STD_MOTION_POST)) mtfm_post = mtfm_post * itfm; memcpy(&objects_vector[i*OBJECT_VECTOR_SIZE+0], &mtfm_pre, sizeof(float4)*3); memcpy(&objects_vector[i*OBJECT_VECTOR_SIZE+3], &mtfm_post, sizeof(float4)*3); } #ifdef __OBJECT_MOTION__ else if(need_motion == Scene::MOTION_BLUR) { if(ob->use_motion) { /* decompose transformations for interpolation */ DecompMotionTransform decomp; transform_motion_decompose(&decomp, &ob->motion, &ob->tfm); memcpy(&objects[offset], &decomp, sizeof(float4)*8); flag |= SD_OBJECT_MOTION; have_motion = true; } } #endif /* dupli object coords */ objects[offset+9] = make_float4(ob->dupli_generated[0], ob->dupli_generated[1], ob->dupli_generated[2], 0.0f); objects[offset+10] = make_float4(ob->dupli_uv[0], ob->dupli_uv[1], 0.0f, 0.0f); /* object flag */ if(ob->use_holdout) flag |= SD_HOLDOUT_MASK; object_flag[i] = flag; i++; if(progress.get_cancel()) return; } device->tex_alloc("__objects", dscene->objects); if(need_motion == Scene::MOTION_PASS) device->tex_alloc("__objects_vector", dscene->objects_vector); dscene->data.bvh.have_motion = have_motion; } void ObjectManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress) { if(!need_update) return; device_free(device, dscene); if(scene->objects.size() == 0) return; /* object info flag */ uint *object_flag = dscene->object_flag.resize(scene->objects.size()); /* set object transform matrices, before applying static transforms */ progress.set_status("Updating Objects", "Copying Transformations to device"); device_update_transforms(device, dscene, scene, object_flag, progress); if(progress.get_cancel()) return; /* prepare for static BVH building */ /* todo: do before to support getting object level coords? */ if(scene->params.bvh_type == SceneParams::BVH_STATIC) { progress.set_status("Updating Objects", "Applying Static Transformations"); apply_static_transforms(scene, object_flag, progress); } /* allocate object flag */ device->tex_alloc("__object_flag", dscene->object_flag); need_update = false; } void ObjectManager::device_free(Device *device, DeviceScene *dscene) { device->tex_free(dscene->objects); dscene->objects.clear(); device->tex_free(dscene->objects_vector); dscene->objects_vector.clear(); device->tex_free(dscene->object_flag); dscene->object_flag.clear(); } void ObjectManager::apply_static_transforms(Scene *scene, uint *object_flag, Progress& progress) { /* todo: normals and displacement should be done before applying transform! */ /* todo: create objects/meshes in right order! */ /* counter mesh users */ map mesh_users; #ifdef __OBJECT_MOTION__ Scene::MotionType need_motion = scene->need_motion(); bool motion_blur = need_motion == Scene::MOTION_BLUR; #else bool motion_blur = false; #endif int i = 0; foreach(Object *object, scene->objects) { map::iterator it = mesh_users.find(object->mesh); if(it == mesh_users.end()) mesh_users[object->mesh] = 1; else it->second++; } if(progress.get_cancel()) return; /* apply transforms for objects with single user meshes */ foreach(Object *object, scene->objects) { if(mesh_users[object->mesh] == 1) { if(!(motion_blur && object->use_motion)) { if(!object->mesh->transform_applied) { object->apply_transform(); object->mesh->transform_applied = true; if(progress.get_cancel()) return; } object_flag[i] |= SD_TRANSFORM_APPLIED; } } i++; } } void ObjectManager::tag_update(Scene *scene) { need_update = true; scene->curve_system_manager->need_update = true; scene->mesh_manager->need_update = true; scene->light_manager->need_update = true; } CCL_NAMESPACE_END