{ fetchurl , python , anki }: python.pkgs.buildPythonApplication rec { pname = "mnemosyne"; version = "2.7.1"; src = fetchurl { url = "mirror://sourceforge/project/mnemosyne-proj/mnemosyne/mnemosyne-${version}/Mnemosyne-${version}.tar.gz"; sha256 = "0dhvg9cxc6m6kzk75h363h1g0bl80cqz11cijh0zpz9f4w6lnqsq"; }; nativeBuildInputs = with python.pkgs; [ wrapPython pyqtwebengine.wrapQtAppsHook ]; buildInputs = [ anki ]; propagatedBuildInputs = with python.pkgs; [ pyqtwebengine pyqt5 matplotlib cherrypy cheroot webob ]; prePatch = '' substituteInPlace setup.py --replace /usr $out find . -type f -exec grep -H sys.exec_prefix {} ';' | cut -d: -f1 | xargs sed -i s,sys.exec_prefix,\"$out\", ''; # No tests/ directrory in tarball doCheck = false; postInstall = '' mkdir -p $out/share mv $out/${python.sitePackages}/$out/share/locale $out/share rm -r $out/${python.sitePackages}/nix ''; dontWrapQtApps = true; preFixup = '' makeWrapperArgs+=("''${qtWrapperArgs[@]}") ''; meta = { homepage = "https://mnemosyne-proj.org/"; description = "Spaced-repetition software"; longDescription = '' The Mnemosyne Project has two aspects: * It's a free flash-card tool which optimizes your learning process. * It's a research project into the nature of long-term memory. We strive to provide a clear, uncluttered piece of software, easy to use and to understand for newbies, but still infinitely customisable through plugins and scripts for power users. ## Efficient learning Mnemosyne uses a sophisticated algorithm to schedule the best time for a card to come up for review. Difficult cards that you tend to forget quickly will be scheduled more often, while Mnemosyne won't waste your time on things you remember well. ## Memory research If you want, anonymous statistics on your learning process can be uploaded to a central server for analysis. This data will be valuable to study the behaviour of our memory over a very long time period. The results will be used to improve the scheduling algorithms behind the software even further. ''; }; }