// // Copyright (c) 2009 Mikko Mononen memon@inside.org // // This software is provided 'as-is', without any express or implied // warranty. In no event will the authors be held liable for any damages // arising from the use of this software. // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it // freely, subject to the following restrictions: // 1. The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. If you use this software // in a product, an acknowledgment in the product documentation would be // appreciated but is not required. // 2. Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // 3. This notice may not be removed or altered from any source distribution. // #include #define _USE_MATH_DEFINES #include #include #include #include #include "Recast.h" #include "RecastLog.h" #include "RecastTimer.h" static unsigned short* calculateDistanceField(rcCompactHeightfield& chf, unsigned short* src, unsigned short* dst, unsigned short& maxDist) { const int w = chf.width; const int h = chf.height; // Init distance and points. for (int i = 0; i < chf.spanCount; ++i) src[i] = 0xffff; // Mark boundary cells. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; int nc = 0; for (int dir = 0; dir < 4; ++dir) { if (rcGetCon(s, dir) != 0xf) nc++; } if (nc != 4) src[i] = 0; } } } // Pass 1 for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; if (rcGetCon(s, 0) != 0xf) { // (-1,0) const int ax = x + rcGetDirOffsetX(0); const int ay = y + rcGetDirOffsetY(0); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0); const rcCompactSpan& as = chf.spans[ai]; if (src[ai]+2 < src[i]) src[i] = src[ai]+2; // (-1,-1) if (rcGetCon(as, 3) != 0xf) { const int aax = ax + rcGetDirOffsetX(3); const int aay = ay + rcGetDirOffsetY(3); const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 3); if (src[aai]+3 < src[i]) src[i] = src[aai]+3; } } if (rcGetCon(s, 3) != 0xf) { // (0,-1) const int ax = x + rcGetDirOffsetX(3); const int ay = y + rcGetDirOffsetY(3); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3); const rcCompactSpan& as = chf.spans[ai]; if (src[ai]+2 < src[i]) src[i] = src[ai]+2; // (1,-1) if (rcGetCon(as, 2) != 0xf) { const int aax = ax + rcGetDirOffsetX(2); const int aay = ay + rcGetDirOffsetY(2); const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 2); if (src[aai]+3 < src[i]) src[i] = src[aai]+3; } } } } } // Pass 2 for (int y = h-1; y >= 0; --y) { for (int x = w-1; x >= 0; --x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; if (rcGetCon(s, 2) != 0xf) { // (1,0) const int ax = x + rcGetDirOffsetX(2); const int ay = y + rcGetDirOffsetY(2); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 2); const rcCompactSpan& as = chf.spans[ai]; if (src[ai]+2 < src[i]) src[i] = src[ai]+2; // (1,1) if (rcGetCon(as, 1) != 0xf) { const int aax = ax + rcGetDirOffsetX(1); const int aay = ay + rcGetDirOffsetY(1); const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 1); if (src[aai]+3 < src[i]) src[i] = src[aai]+3; } } if (rcGetCon(s, 1) != 0xf) { // (0,1) const int ax = x + rcGetDirOffsetX(1); const int ay = y + rcGetDirOffsetY(1); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 1); const rcCompactSpan& as = chf.spans[ai]; if (src[ai]+2 < src[i]) src[i] = src[ai]+2; // (-1,1) if (rcGetCon(as, 0) != 0xf) { const int aax = ax + rcGetDirOffsetX(0); const int aay = ay + rcGetDirOffsetY(0); const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 0); if (src[aai]+3 < src[i]) src[i] = src[aai]+3; } } } } } maxDist = 0; for (int i = 0; i < chf.spanCount; ++i) maxDist = rcMax(src[i], maxDist); return src; } static unsigned short* boxBlur(rcCompactHeightfield& chf, int thr, unsigned short* src, unsigned short* dst) { const int w = chf.width; const int h = chf.height; thr *= 2; for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { const rcCompactSpan& s = chf.spans[i]; int cd = (int)src[i]; if (cd <= thr) { dst[i] = cd; continue; } int d = cd; for (int dir = 0; dir < 4; ++dir) { if (rcGetCon(s, dir) != 0xf) { const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); d += (int)src[ai]; const rcCompactSpan& as = chf.spans[ai]; const int dir2 = (dir+1) & 0x3; if (rcGetCon(as, dir2) != 0xf) { const int ax2 = ax + rcGetDirOffsetX(dir2); const int ay2 = ay + rcGetDirOffsetY(dir2); const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2); d += (int)src[ai2]; } else { d += cd; } } else { d += cd*2; } } dst[i] = (unsigned short)((d+5)/9); } } } return dst; } static bool floodRegion(int x, int y, int i, unsigned short level, unsigned short minLevel, unsigned short r, rcCompactHeightfield& chf, unsigned short* src, rcIntArray& stack) { const int w = chf.width; // Flood fill mark region. stack.resize(0); stack.push((int)x); stack.push((int)y); stack.push((int)i); src[i*2] = r; src[i*2+1] = 0; unsigned short lev = level >= minLevel+2 ? level-2 : minLevel; int count = 0; while (stack.size() > 0) { int ci = stack.pop(); int cy = stack.pop(); int cx = stack.pop(); const rcCompactSpan& cs = chf.spans[ci]; // Check if any of the neighbours already have a valid region set. unsigned short ar = 0; for (int dir = 0; dir < 4; ++dir) { // 8 connected if (rcGetCon(cs, dir) != 0xf) { const int ax = cx + rcGetDirOffsetX(dir); const int ay = cy + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir); unsigned short nr = src[ai*2]; if (nr != 0 && nr != r) ar = nr; const rcCompactSpan& as = chf.spans[ai]; const int dir2 = (dir+1) & 0x3; if (rcGetCon(as, dir2) != 0xf) { const int ax2 = ax + rcGetDirOffsetX(dir2); const int ay2 = ay + rcGetDirOffsetY(dir2); const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2); unsigned short nr = src[ai2*2]; if (nr != 0 && nr != r) ar = nr; } } } if (ar != 0) { src[ci*2] = 0; continue; } count++; // Expand neighbours. for (int dir = 0; dir < 4; ++dir) { if (rcGetCon(cs, dir) != 0xf) { const int ax = cx + rcGetDirOffsetX(dir); const int ay = cy + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir); if (chf.spans[ai].dist >= lev) { if (src[ai*2] == 0) { src[ai*2] = r; src[ai*2+1] = 0; stack.push(ax); stack.push(ay); stack.push(ai); } } } } } return count > 0; } static unsigned short* expandRegions(int maxIter, unsigned short level, rcCompactHeightfield& chf, unsigned short* src, unsigned short* dst, rcIntArray& stack) { const int w = chf.width; const int h = chf.height; // Find cells revealed by the raised level. stack.resize(0); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { if (chf.spans[i].dist >= level && src[i*2] == 0) { stack.push(x); stack.push(y); stack.push(i); } } } } int iter = 0; while (stack.size() > 0) { int failed = 0; memcpy(dst, src, sizeof(unsigned short)*chf.spanCount*2); for (int j = 0; j < stack.size(); j += 3) { int x = stack[j+0]; int y = stack[j+1]; int i = stack[j+2]; if (i < 0) { failed++; continue; } unsigned short r = src[i*2]; unsigned short d2 = 0xffff; const rcCompactSpan& s = chf.spans[i]; for (int dir = 0; dir < 4; ++dir) { if (rcGetCon(s, dir) == 0xf) continue; const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); if (src[ai*2] > 0 && (src[ai*2] & RC_BORDER_REG) == 0) { if ((int)src[ai*2+1]+2 < (int)d2) { r = src[ai*2]; d2 = src[ai*2+1]+2; } } } if (r) { stack[j+2] = -1; // mark as used dst[i*2] = r; dst[i*2+1] = d2; } else { failed++; } } // rcSwap source and dest. rcSwap(src, dst); if (failed*3 == stack.size()) break; if (level > 0) { ++iter; if (iter >= maxIter) break; } } return src; } struct rcRegion { inline rcRegion() : count(0), id(0), remap(false) {} int count; unsigned short id; bool remap; rcIntArray connections; rcIntArray floors; }; static void removeAdjacentNeighbours(rcRegion& reg) { // Remove adjacent duplicates. for (int i = 0; i < reg.connections.size() && reg.connections.size() > 1; ) { int ni = (i+1) % reg.connections.size(); if (reg.connections[i] == reg.connections[ni]) { // Remove duplicate for (int j = i; j < reg.connections.size()-1; ++j) reg.connections[j] = reg.connections[j+1]; reg.connections.pop(); } else ++i; } } static void replaceNeighbour(rcRegion& reg, unsigned short oldId, unsigned short newId) { bool neiChanged = false; for (int i = 0; i < reg.connections.size(); ++i) { if (reg.connections[i] == oldId) { reg.connections[i] = newId; neiChanged = true; } } for (int i = 0; i < reg.floors.size(); ++i) { if (reg.floors[i] == oldId) reg.floors[i] = newId; } if (neiChanged) removeAdjacentNeighbours(reg); } static bool canMergeWithRegion(rcRegion& reg, unsigned short id) { int n = 0; for (int i = 0; i < reg.connections.size(); ++i) { if (reg.connections[i] == id) n++; } if (n > 1) return false; for (int i = 0; i < reg.floors.size(); ++i) { if (reg.floors[i] == id) return false; } return true; } static void addUniqueFloorRegion(rcRegion& reg, unsigned short n) { for (int i = 0; i < reg.floors.size(); ++i) if (reg.floors[i] == n) return; reg.floors.push(n); } static bool mergeRegions(rcRegion& rega, rcRegion& regb) { unsigned short aid = rega.id; unsigned short bid = regb.id; // Duplicate current neighbourhood. rcIntArray acon; acon.resize(rega.connections.size()); for (int i = 0; i < rega.connections.size(); ++i) acon[i] = rega.connections[i]; rcIntArray& bcon = regb.connections; // Find insertion point on A. int insa = -1; for (int i = 0; i < acon.size(); ++i) { if (acon[i] == bid) { insa = i; break; } } if (insa == -1) return false; // Find insertion point on B. int insb = -1; for (int i = 0; i < bcon.size(); ++i) { if (bcon[i] == aid) { insb = i; break; } } if (insb == -1) return false; // Merge neighbours. rega.connections.resize(0); for (int i = 0, ni = acon.size(); i < ni-1; ++i) rega.connections.push(acon[(insa+1+i) % ni]); for (int i = 0, ni = bcon.size(); i < ni-1; ++i) rega.connections.push(bcon[(insb+1+i) % ni]); removeAdjacentNeighbours(rega); for (int j = 0; j < regb.floors.size(); ++j) addUniqueFloorRegion(rega, regb.floors[j]); rega.count += regb.count; regb.count = 0; regb.connections.resize(0); return true; } static bool isRegionConnectedToBorder(const rcRegion& reg) { // Region is connected to border if // one of the neighbours is null id. for (int i = 0; i < reg.connections.size(); ++i) { if (reg.connections[i] == 0) return true; } return false; } static bool isSolidEdge(rcCompactHeightfield& chf, unsigned short* src, int x, int y, int i, int dir) { const rcCompactSpan& s = chf.spans[i]; unsigned short r = 0; if (rcGetCon(s, dir) != 0xf) { const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); r = src[ai*2]; } if (r == src[i*2]) return false; return true; } static void walkContour(int x, int y, int i, int dir, rcCompactHeightfield& chf, unsigned short* src, rcIntArray& cont) { int startDir = dir; int starti = i; const rcCompactSpan& ss = chf.spans[i]; unsigned short curReg = 0; if (rcGetCon(ss, dir) != 0xf) { const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(ss, dir); curReg = src[ai*2]; } cont.push(curReg); int iter = 0; while (++iter < 40000) { const rcCompactSpan& s = chf.spans[i]; if (isSolidEdge(chf, src, x, y, i, dir)) { // Choose the edge corner unsigned short r = 0; if (rcGetCon(s, dir) != 0xf) { const int ax = x + rcGetDirOffsetX(dir); const int ay = y + rcGetDirOffsetY(dir); const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); r = src[ai*2]; } if (r != curReg) { curReg = r; cont.push(curReg); } dir = (dir+1) & 0x3; // Rotate CW } else { int ni = -1; const int nx = x + rcGetDirOffsetX(dir); const int ny = y + rcGetDirOffsetY(dir); if (rcGetCon(s, dir) != 0xf) { const rcCompactCell& nc = chf.cells[nx+ny*chf.width]; ni = (int)nc.index + rcGetCon(s, dir); } if (ni == -1) { // Should not happen. return; } x = nx; y = ny; i = ni; dir = (dir+3) & 0x3; // Rotate CCW } if (starti == i && startDir == dir) { break; } } // Remove adjacent duplicates. if (cont.size() > 1) { for (int i = 0; i < cont.size(); ) { int ni = (i+1) % cont.size(); if (cont[i] == cont[ni]) { for (int j = i; j < cont.size()-1; ++j) cont[j] = cont[j+1]; cont.pop(); } else ++i; } } } static bool filterSmallRegions(int minRegionSize, int mergeRegionSize, unsigned short& maxRegionId, rcCompactHeightfield& chf, unsigned short* src) { const int w = chf.width; const int h = chf.height; int nreg = maxRegionId+1; rcRegion* regions = new rcRegion[nreg]; if (!regions) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "filterSmallRegions: Out of memory 'regions' (%d).", nreg); return false; } for (int i = 0; i < nreg; ++i) regions[i].id = (unsigned short)i; // Find edge of a region and find connections around the contour. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { unsigned short r = src[i*2]; if (r == 0 || r >= nreg) continue; rcRegion& reg = regions[r]; reg.count++; // Update floors. for (int j = (int)c.index; j < ni; ++j) { if (i == j) continue; unsigned short floorId = src[j*2]; if (floorId == 0 || floorId >= nreg) continue; addUniqueFloorRegion(reg, floorId); } // Have found contour if (reg.connections.size() > 0) continue; // Check if this cell is next to a border. int ndir = -1; for (int dir = 0; dir < 4; ++dir) { if (isSolidEdge(chf, src, x, y, i, dir)) { ndir = dir; break; } } if (ndir != -1) { // The cell is at border. // Walk around the contour to find all the neighbours. walkContour(x, y, i, ndir, chf, src, reg.connections); } } } } // Remove too small unconnected regions. for (int i = 0; i < nreg; ++i) { rcRegion& reg = regions[i]; if (reg.id == 0 || (reg.id & RC_BORDER_REG)) continue; if (reg.count == 0) continue; if (reg.connections.size() == 1 && reg.connections[0] == 0) { if (reg.count < minRegionSize) { // Non-connected small region, remove. reg.count = 0; reg.id = 0; } } } // Merge too small regions to neighbour regions. int mergeCount = 0 ; do { mergeCount = 0; for (int i = 0; i < nreg; ++i) { rcRegion& reg = regions[i]; if (reg.id == 0 || (reg.id & RC_BORDER_REG)) continue; if (reg.count == 0) continue; // Check to see if the region should be merged. if (reg.count > mergeRegionSize && isRegionConnectedToBorder(reg)) continue; // Small region with more than 1 connection. // Or region which is not connected to a border at all. // Find smallest neighbour region that connects to this one. int smallest = 0xfffffff; unsigned short mergeId = reg.id; for (int j = 0; j < reg.connections.size(); ++j) { if (reg.connections[j] & RC_BORDER_REG) continue; rcRegion& mreg = regions[reg.connections[j]]; if (mreg.id == 0 || (mreg.id & RC_BORDER_REG)) continue; if (mreg.count < smallest && canMergeWithRegion(reg, mreg.id) && canMergeWithRegion(mreg, reg.id)) { smallest = mreg.count; mergeId = mreg.id; } } // Found new id. if (mergeId != reg.id) { unsigned short oldId = reg.id; rcRegion& target = regions[mergeId]; // Merge neighbours. if (mergeRegions(target, reg)) { // Fixup regions pointing to current region. for (int j = 0; j < nreg; ++j) { if (regions[j].id == 0 || (regions[j].id & RC_BORDER_REG)) continue; // If another region was already merged into current region // change the nid of the previous region too. if (regions[j].id == oldId) regions[j].id = mergeId; // Replace the current region with the new one if the // current regions is neighbour. replaceNeighbour(regions[j], oldId, mergeId); } mergeCount++; } } } } while (mergeCount > 0); // Compress region Ids. for (int i = 0; i < nreg; ++i) { regions[i].remap = false; if (regions[i].id == 0) continue; // Skip nil regions. if (regions[i].id & RC_BORDER_REG) continue; // Skip external regions. regions[i].remap = true; } unsigned short regIdGen = 0; for (int i = 0; i < nreg; ++i) { if (!regions[i].remap) continue; unsigned short oldId = regions[i].id; unsigned short newId = ++regIdGen; for (int j = i; j < nreg; ++j) { if (regions[j].id == oldId) { regions[j].id = newId; regions[j].remap = false; } } } maxRegionId = regIdGen; // Remap regions. for (int i = 0; i < chf.spanCount; ++i) { if ((src[i*2] & RC_BORDER_REG) == 0) src[i*2] = regions[src[i*2]].id; } delete [] regions; return true; } bool rcBuildDistanceField(rcCompactHeightfield& chf) { rcTimeVal startTime = rcGetPerformanceTimer(); unsigned short* dist0 = new unsigned short[chf.spanCount]; if (!dist0) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'dist0' (%d).", chf.spanCount); return false; } unsigned short* dist1 = new unsigned short[chf.spanCount]; if (!dist1) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'dist1' (%d).", chf.spanCount); delete [] dist0; return false; } unsigned short* src = dist0; unsigned short* dst = dist1; unsigned short maxDist = 0; rcTimeVal distStartTime = rcGetPerformanceTimer(); if (calculateDistanceField(chf, src, dst, maxDist) != src) rcSwap(src, dst); chf.maxDistance = maxDist; rcTimeVal distEndTime = rcGetPerformanceTimer(); rcTimeVal blurStartTime = rcGetPerformanceTimer(); // Blur if (boxBlur(chf, 1, src, dst) != src) rcSwap(src, dst); // Store distance. for (int i = 0; i < chf.spanCount; ++i) chf.spans[i].dist = src[i]; rcTimeVal blurEndTime = rcGetPerformanceTimer(); delete [] dist0; delete [] dist1; rcTimeVal endTime = rcGetPerformanceTimer(); /* if (rcGetLog()) { rcGetLog()->log(RC_LOG_PROGRESS, "Build distance field: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f); rcGetLog()->log(RC_LOG_PROGRESS, " - dist: %.3f ms", rcGetDeltaTimeUsec(distStartTime, distEndTime)/1000.0f); rcGetLog()->log(RC_LOG_PROGRESS, " - blur: %.3f ms", rcGetDeltaTimeUsec(blurStartTime, blurEndTime)/1000.0f); }*/ if (rcGetBuildTimes()) { rcGetBuildTimes()->buildDistanceField += rcGetDeltaTimeUsec(startTime, endTime); rcGetBuildTimes()->buildDistanceFieldDist += rcGetDeltaTimeUsec(distStartTime, distEndTime); rcGetBuildTimes()->buildDistanceFieldBlur += rcGetDeltaTimeUsec(blurStartTime, blurEndTime); } return true; } static void paintRectRegion(int minx, int maxx, int miny, int maxy, unsigned short regId, unsigned short minLevel, rcCompactHeightfield& chf, unsigned short* src) { const int w = chf.width; for (int y = miny; y < maxy; ++y) { for (int x = minx; x < maxx; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { if (chf.spans[i].dist >= minLevel) src[i*2] = regId; } } } } bool rcBuildRegions(rcCompactHeightfield& chf, int walkableRadius, int borderSize, int minRegionSize, int mergeRegionSize) { rcTimeVal startTime = rcGetPerformanceTimer(); const int w = chf.width; const int h = chf.height; unsigned short* tmp1 = new unsigned short[chf.spanCount*2]; if (!tmp1) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'tmp1' (%d).", chf.spanCount*2); return false; } unsigned short* tmp2 = new unsigned short[chf.spanCount*2]; if (!tmp2) { if (rcGetLog()) rcGetLog()->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'tmp2' (%d).", chf.spanCount*2); delete [] tmp1; return false; } rcTimeVal regStartTime = rcGetPerformanceTimer(); rcIntArray stack(1024); rcIntArray visited(1024); unsigned short* src = tmp1; unsigned short* dst = tmp2; memset(src, 0, sizeof(unsigned short) * chf.spanCount*2); unsigned short regionId = 1; unsigned short level = (chf.maxDistance+1) & ~1; unsigned short minLevel = (unsigned short)(walkableRadius*2); const int expandIters = 4 + walkableRadius * 2; // Mark border regions. paintRectRegion(0, borderSize, 0, h, regionId|RC_BORDER_REG, minLevel, chf, src); regionId++; paintRectRegion(w-borderSize, w, 0, h, regionId|RC_BORDER_REG, minLevel, chf, src); regionId++; paintRectRegion(0, w, 0, borderSize, regionId|RC_BORDER_REG, minLevel, chf, src); regionId++; paintRectRegion(0, w, h-borderSize, h, regionId|RC_BORDER_REG, minLevel, chf, src); regionId++; rcTimeVal expTime = 0; rcTimeVal floodTime = 0; while (level > minLevel) { level = level >= 2 ? level-2 : 0; rcTimeVal expStartTime = rcGetPerformanceTimer(); // Expand current regions until no empty connected cells found. if (expandRegions(expandIters, level, chf, src, dst, stack) != src) rcSwap(src, dst); expTime += rcGetPerformanceTimer() - expStartTime; rcTimeVal floodStartTime = rcGetPerformanceTimer(); // Mark new regions with IDs. for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { const rcCompactCell& c = chf.cells[x+y*w]; for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) { if (chf.spans[i].dist < level || src[i*2] != 0) continue; if (floodRegion(x, y, i, minLevel, level, regionId, chf, src, stack)) regionId++; } } } floodTime += rcGetPerformanceTimer() - floodStartTime; } // Expand current regions until no empty connected cells found. if (expandRegions(expandIters*8, minLevel, chf, src, dst, stack) != src) rcSwap(src, dst); rcTimeVal regEndTime = rcGetPerformanceTimer(); rcTimeVal filterStartTime = rcGetPerformanceTimer(); // Filter out small regions. chf.maxRegions = regionId; if (!filterSmallRegions(minRegionSize, mergeRegionSize, chf.maxRegions, chf, src)) return false; rcTimeVal filterEndTime = rcGetPerformanceTimer(); // Write the result out. for (int i = 0; i < chf.spanCount; ++i) chf.spans[i].reg = src[i*2]; delete [] tmp1; delete [] tmp2; rcTimeVal endTime = rcGetPerformanceTimer(); /* if (rcGetLog()) { rcGetLog()->log(RC_LOG_PROGRESS, "Build regions: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f); rcGetLog()->log(RC_LOG_PROGRESS, " - reg: %.3f ms", rcGetDeltaTimeUsec(regStartTime, regEndTime)/1000.0f); rcGetLog()->log(RC_LOG_PROGRESS, " - exp: %.3f ms", rcGetDeltaTimeUsec(0, expTime)/1000.0f); rcGetLog()->log(RC_LOG_PROGRESS, " - flood: %.3f ms", rcGetDeltaTimeUsec(0, floodTime)/1000.0f); rcGetLog()->log(RC_LOG_PROGRESS, " - filter: %.3f ms", rcGetDeltaTimeUsec(filterStartTime, filterEndTime)/1000.0f); } */ if (rcGetBuildTimes()) { rcGetBuildTimes()->buildRegions += rcGetDeltaTimeUsec(startTime, endTime); rcGetBuildTimes()->buildRegionsReg += rcGetDeltaTimeUsec(regStartTime, regEndTime); rcGetBuildTimes()->buildRegionsExp += rcGetDeltaTimeUsec(0, expTime); rcGetBuildTimes()->buildRegionsFlood += rcGetDeltaTimeUsec(0, floodTime); rcGetBuildTimes()->buildRegionsFilter += rcGetDeltaTimeUsec(filterStartTime, filterEndTime); } return true; }