/* * Copyright 2011, Blender Foundation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "device.h" #include "light.h" #include "mesh.h" #include "object.h" #include "scene.h" #include "shader.h" #include "util_foreach.h" #include "util_progress.h" #include "kernel_montecarlo.h" CCL_NAMESPACE_BEGIN static void dump_background_pixels(Device *device, DeviceScene *dscene, int res, vector& pixels) { /* create input */ int width = res; int height = res; device_vector d_input; device_vector d_output; uint4 *d_input_data = d_input.resize(width*height); for(int y = 0; y < height; y++) { for(int x = 0; x < width; x++) { float u = x/(float)width; float v = y/(float)height; uint4 in = make_uint4(__float_as_int(u), __float_as_int(v), 0, 0); d_input_data[x + y*width] = in; } } /* compute on device */ float4 *d_output_data = d_output.resize(width*height); memset((void*)d_output.data_pointer, 0, d_output.memory_size()); device->const_copy_to("__data", &dscene->data, sizeof(dscene->data)); device->mem_alloc(d_input, MEM_READ_ONLY); device->mem_copy_to(d_input); device->mem_alloc(d_output, MEM_WRITE_ONLY); DeviceTask main_task(DeviceTask::SHADER); main_task.shader_input = d_input.device_pointer; main_task.shader_output = d_output.device_pointer; main_task.shader_eval_type = SHADER_EVAL_BACKGROUND; main_task.shader_x = 0; main_task.shader_w = width*height; list split_tasks; main_task.split_max_size(split_tasks, 128*128); foreach(DeviceTask& task, split_tasks) { device->task_add(task); device->task_wait(); } device->mem_copy_from(d_output, 0, 1, d_output.size(), sizeof(float4)); device->mem_free(d_input); device->mem_free(d_output); d_output_data = reinterpret_cast(d_output.data_pointer); pixels.resize(width*height); for(int y = 0; y < height; y++) { for(int x = 0; x < width; x++) { pixels[y*width + x].x = d_output_data[y*width + x].x; pixels[y*width + x].y = d_output_data[y*width + x].y; pixels[y*width + x].z = d_output_data[y*width + x].z; } } } /* Light */ Light::Light() { type = LIGHT_POINT; co = make_float3(0.0f, 0.0f, 0.0f); dir = make_float3(0.0f, 0.0f, 0.0f); size = 0.0f; axisu = make_float3(0.0f, 0.0f, 0.0f); sizeu = 1.0f; axisv = make_float3(0.0f, 0.0f, 0.0f); sizev = 1.0f; map_resolution = 512; cast_shadow = true; shader = 0; } void Light::tag_update(Scene *scene) { scene->light_manager->need_update = true; } /* Light Manager */ LightManager::LightManager() { need_update = true; } LightManager::~LightManager() { } void LightManager::device_update_distribution(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress) { progress.set_status("Updating Lights", "Computing distribution"); /* option to always sample all point lights */ bool multi_light = false; /* count */ size_t num_lights = scene->lights.size(); size_t num_triangles = 0; foreach(Object *object, scene->objects) { Mesh *mesh = object->mesh; bool have_emission = false; /* skip if we have no emission shaders */ foreach(uint sindex, mesh->used_shaders) { Shader *shader = scene->shaders[sindex]; if(shader->sample_as_light && shader->has_surface_emission) { have_emission = true; break; } } /* count triangles */ if(have_emission) { for(size_t i = 0; i < mesh->triangles.size(); i++) { Shader *shader = scene->shaders[mesh->shader[i]]; if(shader->sample_as_light && shader->has_surface_emission) num_triangles++; } } } size_t num_distribution = num_triangles; if(!multi_light) num_distribution += num_lights; /* emission area */ float4 *distribution = dscene->light_distribution.resize(num_distribution + 1); float totarea = 0.0f; /* triangles */ size_t offset = 0; int j = 0; foreach(Object *object, scene->objects) { Mesh *mesh = object->mesh; bool have_emission = false; /* skip if we have no emission shaders */ foreach(uint sindex, mesh->used_shaders) { Shader *shader = scene->shaders[sindex]; if(shader->sample_as_light && shader->has_surface_emission) { have_emission = true; break; } } /* sum area */ if(have_emission) { Transform tfm = object->tfm; int object_id = j; if(mesh->transform_applied) object_id = ~object_id; for(size_t i = 0; i < mesh->triangles.size(); i++) { Shader *shader = scene->shaders[mesh->shader[i]]; if(shader->sample_as_light && shader->has_surface_emission) { distribution[offset].x = totarea; distribution[offset].y = __int_as_float(i + mesh->tri_offset); distribution[offset].z = 1.0f; distribution[offset].w = __int_as_float(object_id); offset++; Mesh::Triangle t = mesh->triangles[i]; float3 p1 = transform(&tfm, mesh->verts[t.v[0]]); float3 p2 = transform(&tfm, mesh->verts[t.v[1]]); float3 p3 = transform(&tfm, mesh->verts[t.v[2]]); totarea += triangle_area(p1, p2, p3); } } } if(progress.get_cancel()) return; j++; } float trianglearea = totarea; /* point lights */ if(!multi_light) { float lightarea = (totarea > 0.0f)? totarea/scene->lights.size(): 1.0f; for(int i = 0; i < scene->lights.size(); i++, offset++) { distribution[offset].x = totarea; distribution[offset].y = __int_as_float(~(int)i); distribution[offset].z = 1.0f; distribution[offset].w = scene->lights[i]->size; totarea += lightarea; } } /* normalize cumulative distribution functions */ distribution[num_distribution].x = totarea; distribution[num_distribution].y = 0.0f; distribution[num_distribution].z = 0.0f; distribution[num_distribution].w = 0.0f; if(totarea > 0.0f) { for(size_t i = 0; i < num_distribution; i++) distribution[i].x /= totarea; distribution[num_distribution].x = 1.0f; } if(progress.get_cancel()) return; /* update device */ KernelIntegrator *kintegrator = &dscene->data.integrator; kintegrator->use_direct_light = (totarea > 0.0f) || (multi_light && num_lights); if(kintegrator->use_direct_light) { /* number of emissives */ kintegrator->num_distribution = (totarea > 0.0f)? num_distribution: 0; /* precompute pdfs */ kintegrator->pdf_triangles = 0.0f; kintegrator->pdf_lights = 0.0f; if(multi_light) { /* sample one of all triangles and all lights */ kintegrator->num_all_lights = num_lights; if(trianglearea > 0.0f) kintegrator->pdf_triangles = 1.0f/trianglearea; if(num_lights) kintegrator->pdf_lights = 1.0f; } else { /* sample one, with 0.5 probability of light or triangle */ kintegrator->num_all_lights = 0; if(trianglearea > 0.0f) { kintegrator->pdf_triangles = 1.0f/trianglearea; if(num_lights) kintegrator->pdf_triangles *= 0.5f; } if(num_lights) { kintegrator->pdf_lights = 1.0f/num_lights; if(trianglearea > 0.0f) kintegrator->pdf_lights *= 0.5f; } } /* CDF */ device->tex_alloc("__light_distribution", dscene->light_distribution); } else dscene->light_distribution.clear(); } void LightManager::device_update_background(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress) { KernelIntegrator *kintegrator = &dscene->data.integrator; Light *background_light = NULL; /* find background light */ foreach(Light *light, scene->lights) { if(light->type == LIGHT_BACKGROUND) { background_light = light; break; } } /* no background light found, signal renderer to skip sampling */ if(!background_light) { kintegrator->pdf_background_res = 0; return; } progress.set_status("Updating Lights", "Importance map"); assert(kintegrator->use_direct_light); /* get the resolution from the light's size (we stuff it in there) */ int res = background_light->map_resolution; kintegrator->pdf_background_res = res; assert(res > 0); vector pixels; dump_background_pixels(device, dscene, res, pixels); if(progress.get_cancel()) return; /* build row distributions and column distribution for the infinite area environment light */ int cdf_count = res + 1; float2 *marg_cdf = dscene->light_background_marginal_cdf.resize(cdf_count); float2 *cond_cdf = dscene->light_background_conditional_cdf.resize(cdf_count * cdf_count); /* conditional CDFs (rows, U direction) */ for(int i = 0; i < res; i++) { float sin_theta = sinf(M_PI_F * (i + 0.5f) / res); float3 env_color = pixels[i * res]; float ave_luminamce = average(env_color); cond_cdf[i * cdf_count].x = ave_luminamce * sin_theta; cond_cdf[i * cdf_count].y = 0.0f; for(int j = 1; j < res; j++) { env_color = pixels[i * res + j]; ave_luminamce = average(env_color); cond_cdf[i * cdf_count + j].x = ave_luminamce * sin_theta; cond_cdf[i * cdf_count + j].y = cond_cdf[i * cdf_count + j - 1].y + cond_cdf[i * cdf_count + j - 1].x / res; } float cdf_total = cond_cdf[i * cdf_count + res - 1].y + cond_cdf[i * cdf_count + res - 1].x / res; /* stuff the total into the brightness value for the last entry, because we are going to normalize the CDFs to 0.0 to 1.0 afterwards */ cond_cdf[i * cdf_count + res].x = cdf_total; if(cdf_total > 0.0f) for(int j = 1; j < res; j++) cond_cdf[i * cdf_count + j].y /= cdf_total; cond_cdf[i * cdf_count + res].y = 1.0f; } /* marginal CDFs (column, V direction, sum of rows) */ marg_cdf[0].x = cond_cdf[res].x; marg_cdf[0].y = 0.0f; for(int i = 1; i < res; i++) { marg_cdf[i].x = cond_cdf[i * cdf_count + res].x; marg_cdf[i].y = marg_cdf[i - 1].y + marg_cdf[i - 1].x / res; } float cdf_total = marg_cdf[res - 1].y + marg_cdf[res - 1].x / res; marg_cdf[res].x = cdf_total; if(cdf_total > 0.0f) for(int i = 1; i < res; i++) marg_cdf[i].y /= cdf_total; marg_cdf[res].y = 1.0f; /* update device */ device->tex_alloc("__light_background_marginal_cdf", dscene->light_background_marginal_cdf); device->tex_alloc("__light_background_conditional_cdf", dscene->light_background_conditional_cdf); } void LightManager::device_update_points(Device *device, DeviceScene *dscene, Scene *scene) { if(scene->lights.size() == 0) return; float4 *light_data = dscene->light_data.resize(scene->lights.size()*LIGHT_SIZE); if(!device->info.advanced_shading) { /* remove unsupported light */ foreach(Light *light, scene->lights) { if(light->type == LIGHT_BACKGROUND) { scene->lights.erase(std::remove(scene->lights.begin(), scene->lights.end(), light), scene->lights.end()); break; } } } for(size_t i = 0; i < scene->lights.size(); i++) { Light *light = scene->lights[i]; float3 co = light->co; float3 dir = normalize(light->dir); int shader_id = scene->shader_manager->get_shader_id(scene->lights[i]->shader); if(!light->cast_shadow) shader_id &= ~SHADER_CAST_SHADOW; if(light->type == LIGHT_POINT) { shader_id &= ~SHADER_AREA_LIGHT; light_data[i*LIGHT_SIZE + 0] = make_float4(__int_as_float(light->type), co.x, co.y, co.z); light_data[i*LIGHT_SIZE + 1] = make_float4(__int_as_float(shader_id), light->size, 0.0f, 0.0f); light_data[i*LIGHT_SIZE + 2] = make_float4(0.0f, 0.0f, 0.0f, 0.0f); light_data[i*LIGHT_SIZE + 3] = make_float4(0.0f, 0.0f, 0.0f, 0.0f); } else if(light->type == LIGHT_DISTANT) { shader_id &= ~SHADER_AREA_LIGHT; light_data[i*LIGHT_SIZE + 0] = make_float4(__int_as_float(light->type), dir.x, dir.y, dir.z); light_data[i*LIGHT_SIZE + 1] = make_float4(__int_as_float(shader_id), light->size, 0.0f, 0.0f); light_data[i*LIGHT_SIZE + 2] = make_float4(0.0f, 0.0f, 0.0f, 0.0f); light_data[i*LIGHT_SIZE + 3] = make_float4(0.0f, 0.0f, 0.0f, 0.0f); } else if(light->type == LIGHT_BACKGROUND) { shader_id &= ~SHADER_AREA_LIGHT; light_data[i*LIGHT_SIZE + 0] = make_float4(__int_as_float(light->type), 0.0f, 0.0f, 0.0f); light_data[i*LIGHT_SIZE + 1] = make_float4(__int_as_float(shader_id), 0.0f, 0.0f, 0.0f); light_data[i*LIGHT_SIZE + 2] = make_float4(0.0f, 0.0f, 0.0f, 0.0f); light_data[i*LIGHT_SIZE + 3] = make_float4(0.0f, 0.0f, 0.0f, 0.0f); } else if(light->type == LIGHT_AREA) { float3 axisu = light->axisu*(light->sizeu*light->size); float3 axisv = light->axisv*(light->sizev*light->size); light_data[i*LIGHT_SIZE + 0] = make_float4(__int_as_float(light->type), co.x, co.y, co.z); light_data[i*LIGHT_SIZE + 1] = make_float4(__int_as_float(shader_id), axisu.x, axisu.y, axisu.z); light_data[i*LIGHT_SIZE + 2] = make_float4(0.0f, axisv.x, axisv.y, axisv.z); light_data[i*LIGHT_SIZE + 3] = make_float4(0.0f, dir.x, dir.y, dir.z); } } device->tex_alloc("__light_data", dscene->light_data); } void LightManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress) { if(!need_update) return; device_free(device, dscene); device_update_points(device, dscene, scene); if(progress.get_cancel()) return; device_update_distribution(device, dscene, scene, progress); if(progress.get_cancel()) return; device_update_background(device, dscene, scene, progress); if(progress.get_cancel()) return; need_update = false; } void LightManager::device_free(Device *device, DeviceScene *dscene) { device->tex_free(dscene->light_distribution); device->tex_free(dscene->light_data); device->tex_free(dscene->light_background_marginal_cdf); device->tex_free(dscene->light_background_conditional_cdf); dscene->light_distribution.clear(); dscene->light_data.clear(); dscene->light_background_marginal_cdf.clear(); dscene->light_background_conditional_cdf.clear(); } void LightManager::tag_update(Scene *scene) { need_update = true; } CCL_NAMESPACE_END