/** * Do translation/rotation actions * * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ #include "KX_ObjectActuator.h" #include "KX_GameObject.h" #include "KX_PyMath.h" // For PyVecTo - should this include be put in PyObjectPlus? #include "KX_IPhysicsController.h" #ifdef HAVE_CONFIG_H #include #endif /* ------------------------------------------------------------------------- */ /* Native functions */ /* ------------------------------------------------------------------------- */ KX_ObjectActuator:: KX_ObjectActuator( SCA_IObject* gameobj, KX_GameObject* refobj, const MT_Vector3& force, const MT_Vector3& torque, const MT_Vector3& dloc, const MT_Vector3& drot, const MT_Vector3& linV, const MT_Vector3& angV, const short damping, const KX_LocalFlags& flag ) : SCA_IActuator(gameobj), m_force(force), m_torque(torque), m_dloc(dloc), m_drot(drot), m_linear_velocity(linV), m_angular_velocity(angV), m_linear_length2(0.0), m_current_linear_factor(0.0), m_current_angular_factor(0.0), m_damping(damping), m_previous_error(0.0,0.0,0.0), m_error_accumulator(0.0,0.0,0.0), m_bitLocalFlag (flag), m_reference(refobj), m_active_combined_velocity (false), m_linear_damping_active(false), m_angular_damping_active(false) { if (m_bitLocalFlag.ServoControl) { // in servo motion, the force is local if the target velocity is local m_bitLocalFlag.Force = m_bitLocalFlag.LinearVelocity; m_pid = m_torque; } if (m_reference) m_reference->RegisterActuator(this); UpdateFuzzyFlags(); } KX_ObjectActuator::~KX_ObjectActuator() { if (m_reference) m_reference->UnregisterActuator(this); } bool KX_ObjectActuator::Update() { bool bNegativeEvent = IsNegativeEvent(); RemoveAllEvents(); KX_GameObject *parent = static_cast(GetParent()); if (bNegativeEvent) { // If we previously set the linear velocity we now have to inform // the physics controller that we no longer wish to apply it and that // it should reconcile the externally set velocity with it's // own velocity. if (m_active_combined_velocity) { if (parent) parent->ResolveCombinedVelocities( m_linear_velocity, m_angular_velocity, (m_bitLocalFlag.LinearVelocity) != 0, (m_bitLocalFlag.AngularVelocity) != 0 ); m_active_combined_velocity = false; } m_linear_damping_active = false; m_angular_damping_active = false; m_error_accumulator.setValue(0.0,0.0,0.0); m_previous_error.setValue(0.0,0.0,0.0); return false; } else if (parent) { if (m_bitLocalFlag.ServoControl) { // In this mode, we try to reach a target speed using force // As we don't know the friction, we must implement a generic // servo control to achieve the speed in a configurable // v = current velocity // V = target velocity // e = V-v = speed error // dt = time interval since previous update // I = sum(e(t)*dt) // dv = e(t) - e(t-1) // KP, KD, KI : coefficient // F = KP*e+KI*I+KD*dv MT_Scalar mass = parent->GetMass(); if (mass < MT_EPSILON) return false; MT_Vector3 v = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity); if (m_reference) { const MT_Point3& mypos = parent->NodeGetWorldPosition(); const MT_Point3& refpos = m_reference->NodeGetWorldPosition(); MT_Point3 relpos; relpos = (mypos-refpos); MT_Vector3 vel= m_reference->GetVelocity(relpos); if (m_bitLocalFlag.LinearVelocity) // must convert in local space vel = parent->NodeGetWorldOrientation().transposed()*vel; v -= vel; } MT_Vector3 e = m_linear_velocity - v; MT_Vector3 dv = e - m_previous_error; MT_Vector3 I = m_error_accumulator + e; m_force = m_pid.x()*e+m_pid.y()*I+m_pid.z()*dv; // to automatically adapt the PID coefficient to mass; m_force *= mass; if (m_bitLocalFlag.Torque) { if (m_force[0] > m_dloc[0]) { m_force[0] = m_dloc[0]; I[0] = m_error_accumulator[0]; } else if (m_force[0] < m_drot[0]) { m_force[0] = m_drot[0]; I[0] = m_error_accumulator[0]; } } if (m_bitLocalFlag.DLoc) { if (m_force[1] > m_dloc[1]) { m_force[1] = m_dloc[1]; I[1] = m_error_accumulator[1]; } else if (m_force[1] < m_drot[1]) { m_force[1] = m_drot[1]; I[1] = m_error_accumulator[1]; } } if (m_bitLocalFlag.DRot) { if (m_force[2] > m_dloc[2]) { m_force[2] = m_dloc[2]; I[2] = m_error_accumulator[2]; } else if (m_force[2] < m_drot[2]) { m_force[2] = m_drot[2]; I[2] = m_error_accumulator[2]; } } m_previous_error = e; m_error_accumulator = I; parent->ApplyForce(m_force,(m_bitLocalFlag.LinearVelocity) != 0); } else { if (!m_bitLocalFlag.ZeroForce) { parent->ApplyForce(m_force,(m_bitLocalFlag.Force) != 0); } if (!m_bitLocalFlag.ZeroTorque) { parent->ApplyTorque(m_torque,(m_bitLocalFlag.Torque) != 0); } if (!m_bitLocalFlag.ZeroDLoc) { parent->ApplyMovement(m_dloc,(m_bitLocalFlag.DLoc) != 0); } if (!m_bitLocalFlag.ZeroDRot) { parent->ApplyRotation(m_drot,(m_bitLocalFlag.DRot) != 0); } if (!m_bitLocalFlag.ZeroLinearVelocity) { if (m_bitLocalFlag.AddOrSetLinV) { parent->addLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0); } else { m_active_combined_velocity = true; if (m_damping > 0) { MT_Vector3 linV; if (!m_linear_damping_active) { // delta and the start speed (depends on the existing speed in that direction) linV = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity); // keep only the projection along the desired direction m_current_linear_factor = linV.dot(m_linear_velocity)/m_linear_length2; m_linear_damping_active = true; } if (m_current_linear_factor < 1.0) m_current_linear_factor += 1.0/m_damping; if (m_current_linear_factor > 1.0) m_current_linear_factor = 1.0; linV = m_current_linear_factor * m_linear_velocity; parent->setLinearVelocity(linV,(m_bitLocalFlag.LinearVelocity) != 0); } else { parent->setLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0); } } } if (!m_bitLocalFlag.ZeroAngularVelocity) { m_active_combined_velocity = true; if (m_damping > 0) { MT_Vector3 angV; if (!m_angular_damping_active) { // delta and the start speed (depends on the existing speed in that direction) angV = parent->GetAngularVelocity(m_bitLocalFlag.AngularVelocity); // keep only the projection along the desired direction m_current_angular_factor = angV.dot(m_angular_velocity)/m_angular_length2; m_angular_damping_active = true; } if (m_current_angular_factor < 1.0) m_current_angular_factor += 1.0/m_damping; if (m_current_angular_factor > 1.0) m_current_angular_factor = 1.0; angV = m_current_angular_factor * m_angular_velocity; parent->setAngularVelocity(angV,(m_bitLocalFlag.AngularVelocity) != 0); } else { parent->setAngularVelocity(m_angular_velocity,(m_bitLocalFlag.AngularVelocity) != 0); } } } } return true; } CValue* KX_ObjectActuator::GetReplica() { KX_ObjectActuator* replica = new KX_ObjectActuator(*this);//m_float,GetName()); replica->ProcessReplica(); return replica; } void KX_ObjectActuator::ProcessReplica() { SCA_IActuator::ProcessReplica(); if (m_reference) m_reference->RegisterActuator(this); } bool KX_ObjectActuator::UnlinkObject(SCA_IObject* clientobj) { if (clientobj == (SCA_IObject*)m_reference) { // this object is being deleted, we cannot continue to use it as reference. m_reference = NULL; return true; } return false; } void KX_ObjectActuator::Relink(GEN_Map *obj_map) { void **h_obj = (*obj_map)[m_reference]; if (h_obj) { if (m_reference) m_reference->UnregisterActuator(this); m_reference = (KX_GameObject*)(*h_obj); m_reference->RegisterActuator(this); } } /* some 'standard' utilities... */ bool KX_ObjectActuator::isValid(KX_ObjectActuator::KX_OBJECT_ACT_VEC_TYPE type) { bool res = false; res = (type > KX_OBJECT_ACT_NODEF) && (type < KX_OBJECT_ACT_MAX); return res; } /* ------------------------------------------------------------------------- */ /* Python functions */ /* ------------------------------------------------------------------------- */ /* Integration hooks ------------------------------------------------------- */ PyTypeObject KX_ObjectActuator::Type = { PyVarObject_HEAD_INIT(NULL, 0) "KX_ObjectActuator", sizeof(PyObjectPlus_Proxy), 0, py_base_dealloc, 0, 0, 0, 0, py_base_repr, 0,0,0,0,0,0,0,0,0, Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, 0,0,0,0,0,0,0, Methods, 0, 0, &SCA_IActuator::Type, 0,0,0,0,0,0, py_base_new }; PyMethodDef KX_ObjectActuator::Methods[] = { {NULL,NULL} //Sentinel }; PyAttributeDef KX_ObjectActuator::Attributes[] = { KX_PYATTRIBUTE_VECTOR_RW_CHECK("force", -1000, 1000, false, KX_ObjectActuator, m_force, PyUpdateFuzzyFlags), KX_PYATTRIBUTE_BOOL_RW("useLocalForce", KX_ObjectActuator, m_bitLocalFlag.Force), KX_PYATTRIBUTE_VECTOR_RW_CHECK("torque", -1000, 1000, false, KX_ObjectActuator, m_torque, PyUpdateFuzzyFlags), KX_PYATTRIBUTE_BOOL_RW("useLocalTorque", KX_ObjectActuator, m_bitLocalFlag.Torque), KX_PYATTRIBUTE_VECTOR_RW_CHECK("dLoc", -1000, 1000, false, KX_ObjectActuator, m_dloc, PyUpdateFuzzyFlags), KX_PYATTRIBUTE_BOOL_RW("useLocalDLoc", KX_ObjectActuator, m_bitLocalFlag.DLoc), KX_PYATTRIBUTE_VECTOR_RW_CHECK("dRot", -1000, 1000, false, KX_ObjectActuator, m_drot, PyUpdateFuzzyFlags), KX_PYATTRIBUTE_BOOL_RW("useLocalDRot", KX_ObjectActuator, m_bitLocalFlag.DRot), #ifdef USE_MATHUTILS KX_PYATTRIBUTE_RW_FUNCTION("linV", KX_ObjectActuator, pyattr_get_linV, pyattr_set_linV), KX_PYATTRIBUTE_RW_FUNCTION("angV", KX_ObjectActuator, pyattr_get_angV, pyattr_set_angV), #else KX_PYATTRIBUTE_VECTOR_RW_CHECK("linV", -1000, 1000, false, KX_ObjectActuator, m_linear_velocity, PyUpdateFuzzyFlags), KX_PYATTRIBUTE_VECTOR_RW_CHECK("angV", -1000, 1000, false, KX_ObjectActuator, m_angular_velocity, PyUpdateFuzzyFlags), #endif KX_PYATTRIBUTE_BOOL_RW("useLocalLinV", KX_ObjectActuator, m_bitLocalFlag.LinearVelocity), KX_PYATTRIBUTE_BOOL_RW("useLocalAngV", KX_ObjectActuator, m_bitLocalFlag.AngularVelocity), KX_PYATTRIBUTE_SHORT_RW("damping", 0, 1000, false, KX_ObjectActuator, m_damping), KX_PYATTRIBUTE_RW_FUNCTION("forceLimitX", KX_ObjectActuator, pyattr_get_forceLimitX, pyattr_set_forceLimitX), KX_PYATTRIBUTE_RW_FUNCTION("forceLimitY", KX_ObjectActuator, pyattr_get_forceLimitY, pyattr_set_forceLimitY), KX_PYATTRIBUTE_RW_FUNCTION("forceLimitZ", KX_ObjectActuator, pyattr_get_forceLimitZ, pyattr_set_forceLimitZ), KX_PYATTRIBUTE_VECTOR_RW_CHECK("pid", -100, 200, true, KX_ObjectActuator, m_pid, PyCheckPid), KX_PYATTRIBUTE_RW_FUNCTION("reference", KX_ObjectActuator,pyattr_get_reference,pyattr_set_reference), { NULL } //Sentinel }; /* Attribute get/set functions */ #ifdef USE_MATHUTILS /* These require an SGNode */ #define MATHUTILS_VEC_CB_LINV 1 #define MATHUTILS_VEC_CB_ANGV 2 static int mathutils_kxobactu_vector_cb_index= -1; /* index for our callbacks */ static int mathutils_obactu_generic_check(PyObject *self_v) { KX_ObjectActuator* self= static_castBGE_PROXY_REF(self_v); if(self==NULL) return 0; return 1; } static int mathutils_obactu_vector_get(PyObject *self_v, int subtype, float *vec_from) { KX_ObjectActuator* self= static_castBGE_PROXY_REF(self_v); if(self==NULL) return 0; switch(subtype) { case MATHUTILS_VEC_CB_LINV: self->m_linear_velocity.getValue(vec_from); break; case MATHUTILS_VEC_CB_ANGV: self->m_angular_velocity.getValue(vec_from); break; } return 1; } static int mathutils_obactu_vector_set(PyObject *self_v, int subtype, float *vec_to) { KX_ObjectActuator* self= static_castBGE_PROXY_REF(self_v); if(self==NULL) return 0; switch(subtype) { case MATHUTILS_VEC_CB_LINV: self->m_linear_velocity.setValue(vec_to); break; case MATHUTILS_VEC_CB_ANGV: self->m_angular_velocity.setValue(vec_to); break; } return 1; } static int mathutils_obactu_vector_get_index(PyObject *self_v, int subtype, float *vec_from, int index) { float f[4]; /* lazy, avoid repeteing the case statement */ if(!mathutils_obactu_vector_get(self_v, subtype, f)) return 0; vec_from[index]= f[index]; return 1; } static int mathutils_obactu_vector_set_index(PyObject *self_v, int subtype, float *vec_to, int index) { float f= vec_to[index]; /* lazy, avoid repeteing the case statement */ if(!mathutils_obactu_vector_get(self_v, subtype, vec_to)) return 0; vec_to[index]= f; mathutils_obactu_vector_set(self_v, subtype, vec_to); return 1; } Mathutils_Callback mathutils_obactu_vector_cb = { mathutils_obactu_generic_check, mathutils_obactu_vector_get, mathutils_obactu_vector_set, mathutils_obactu_vector_get_index, mathutils_obactu_vector_set_index }; PyObject* KX_ObjectActuator::pyattr_get_linV(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { return newVectorObject_cb(BGE_PROXY_FROM_REF(self_v), 3, mathutils_kxobactu_vector_cb_index, MATHUTILS_VEC_CB_LINV); } int KX_ObjectActuator::pyattr_set_linV(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_ObjectActuator* self= static_cast(self_v); if (!PyVecTo(value, self->m_linear_velocity)) return PY_SET_ATTR_FAIL; return PY_SET_ATTR_SUCCESS; } PyObject* KX_ObjectActuator::pyattr_get_angV(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { return newVectorObject_cb(BGE_PROXY_FROM_REF(self_v), 3, mathutils_kxobactu_vector_cb_index, MATHUTILS_VEC_CB_ANGV); } int KX_ObjectActuator::pyattr_set_angV(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_ObjectActuator* self= static_cast(self_v); if (!PyVecTo(value, self->m_angular_velocity)) return PY_SET_ATTR_FAIL; return PY_SET_ATTR_SUCCESS; } void KX_ObjectActuator_Mathutils_Callback_Init(void) { // register mathutils callbacks, ok to run more then once. mathutils_kxobactu_vector_cb_index= Mathutils_RegisterCallback(&mathutils_obactu_vector_cb); } #endif // USE_MATHUTILS PyObject* KX_ObjectActuator::pyattr_get_forceLimitX(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_ObjectActuator* self = reinterpret_cast(self_v); PyObject *retVal = PyList_New(3); PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(self->m_drot[0])); PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(self->m_dloc[0])); PyList_SET_ITEM(retVal, 2, PyBool_FromLong(self->m_bitLocalFlag.Torque)); return retVal; } int KX_ObjectActuator::pyattr_set_forceLimitX(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_ObjectActuator* self = reinterpret_cast(self_v); PyObject* seq = PySequence_Fast(value, ""); if (seq && PySequence_Fast_GET_SIZE(seq) == 3) { self->m_drot[0] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 0)); self->m_dloc[0] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 1)); self->m_bitLocalFlag.Torque = (PyLong_AsSsize_t(PySequence_Fast_GET_ITEM(value, 2)) != 0); if (!PyErr_Occurred()) { Py_DECREF(seq); return PY_SET_ATTR_SUCCESS; } } Py_XDECREF(seq); PyErr_SetString(PyExc_ValueError, "expected a sequence of 2 floats and a bool"); return PY_SET_ATTR_FAIL; } PyObject* KX_ObjectActuator::pyattr_get_forceLimitY(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_ObjectActuator* self = reinterpret_cast(self_v); PyObject *retVal = PyList_New(3); PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(self->m_drot[1])); PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(self->m_dloc[1])); PyList_SET_ITEM(retVal, 2, PyBool_FromLong(self->m_bitLocalFlag.DLoc)); return retVal; } int KX_ObjectActuator::pyattr_set_forceLimitY(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_ObjectActuator* self = reinterpret_cast(self_v); PyObject* seq = PySequence_Fast(value, ""); if (seq && PySequence_Fast_GET_SIZE(seq) == 3) { self->m_drot[1] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 0)); self->m_dloc[1] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 1)); self->m_bitLocalFlag.DLoc = (PyLong_AsSsize_t(PySequence_Fast_GET_ITEM(value, 2)) != 0); if (!PyErr_Occurred()) { Py_DECREF(seq); return PY_SET_ATTR_SUCCESS; } } Py_XDECREF(seq); PyErr_SetString(PyExc_ValueError, "expected a sequence of 2 floats and a bool"); return PY_SET_ATTR_FAIL; } PyObject* KX_ObjectActuator::pyattr_get_forceLimitZ(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_ObjectActuator* self = reinterpret_cast(self_v); PyObject *retVal = PyList_New(3); PyList_SET_ITEM(retVal, 0, PyFloat_FromDouble(self->m_drot[2])); PyList_SET_ITEM(retVal, 1, PyFloat_FromDouble(self->m_dloc[2])); PyList_SET_ITEM(retVal, 2, PyBool_FromLong(self->m_bitLocalFlag.DRot)); return retVal; } int KX_ObjectActuator::pyattr_set_forceLimitZ(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_ObjectActuator* self = reinterpret_cast(self_v); PyObject* seq = PySequence_Fast(value, ""); if (seq && PySequence_Fast_GET_SIZE(seq) == 3) { self->m_drot[2] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 0)); self->m_dloc[2] = PyFloat_AsDouble(PySequence_Fast_GET_ITEM(value, 1)); self->m_bitLocalFlag.DRot = (PyLong_AsSsize_t(PySequence_Fast_GET_ITEM(value, 2)) != 0); if (!PyErr_Occurred()) { Py_DECREF(seq); return PY_SET_ATTR_SUCCESS; } } Py_XDECREF(seq); PyErr_SetString(PyExc_ValueError, "expected a sequence of 2 floats and a bool"); return PY_SET_ATTR_FAIL; } PyObject* KX_ObjectActuator::pyattr_get_reference(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef) { KX_ObjectActuator* actuator = static_cast(self); if (!actuator->m_reference) Py_RETURN_NONE; return actuator->m_reference->GetProxy(); } int KX_ObjectActuator::pyattr_set_reference(void *self, const struct KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_ObjectActuator* actuator = static_cast(self); KX_GameObject *refOb; if (!ConvertPythonToGameObject(value, &refOb, true, "actu.reference = value: KX_ObjectActuator")) return PY_SET_ATTR_FAIL; if (actuator->m_reference) actuator->m_reference->UnregisterActuator(actuator); if(refOb==NULL) { actuator->m_reference= NULL; } else { actuator->m_reference = refOb; actuator->m_reference->RegisterActuator(actuator); } return PY_SET_ATTR_SUCCESS; } /* eof */