/* Copyright (c) 2005 Gino van den Bergen / Erwin Coumans Permission is hereby granted, free of charge, to any person or organization obtaining a copy of the software and accompanying documentation covered by this license (the "Software") to use, reproduce, display, distribute, execute, and transmit the Software, and to prepare derivative works of the Software, and to permit third-parties to whom the Software is furnished to do so, all subject to the following: The copyright notices in the Software and this entire statement, including the above license grant, this restriction and the following disclaimer, must be included in all copies of the Software, in whole or in part, and all derivative works of the Software, unless such copies or derivative works are solely in the form of machine-executable object code generated by a source language processor. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef SIMD__QUATERNION_H_ #define SIMD__QUATERNION_H_ #include "SimdVector3.h" class SimdQuaternion : public SimdQuadWord { public: SimdQuaternion() {} // template // explicit Quaternion(const SimdScalar *v) : Tuple4(v) {} SimdQuaternion(const SimdScalar& x, const SimdScalar& y, const SimdScalar& z, const SimdScalar& w) : SimdQuadWord(x, y, z, w) {} SimdQuaternion(const SimdVector3& axis, const SimdScalar& angle) { setRotation(axis, angle); } SimdQuaternion(const SimdScalar& yaw, const SimdScalar& pitch, const SimdScalar& roll) { setEuler(yaw, pitch, roll); } void setRotation(const SimdVector3& axis, const SimdScalar& angle) { SimdScalar d = axis.length(); assert(d != SimdScalar(0.0)); SimdScalar s = sinf(angle * SimdScalar(0.5)) / d; setValue(axis.x() * s, axis.y() * s, axis.z() * s, cosf(angle * SimdScalar(0.5))); } void setEuler(const SimdScalar& yaw, const SimdScalar& pitch, const SimdScalar& roll) { SimdScalar halfYaw = SimdScalar(yaw) * SimdScalar(0.5); SimdScalar halfPitch = SimdScalar(pitch) * SimdScalar(0.5); SimdScalar halfRoll = SimdScalar(roll) * SimdScalar(0.5); SimdScalar cosYaw = cosf(halfYaw); SimdScalar sinYaw = sinf(halfYaw); SimdScalar cosPitch = cosf(halfPitch); SimdScalar sinPitch = sinf(halfPitch); SimdScalar cosRoll = cosf(halfRoll); SimdScalar sinRoll = sinf(halfRoll); setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); } SimdQuaternion& operator+=(const SimdQuaternion& q) { m_x += q.x(); m_y += q.y(); m_z += q.z(); m_unusedW += q[3]; return *this; } SimdQuaternion& operator-=(const SimdQuaternion& q) { m_x -= q.x(); m_y -= q.y(); m_z -= q.z(); m_unusedW -= q[3]; return *this; } SimdQuaternion& operator*=(const SimdScalar& s) { m_x *= s; m_y *= s; m_z *= s; m_unusedW *= s; return *this; } SimdQuaternion& operator*=(const SimdQuaternion& q) { setValue(m_unusedW * q.x() + m_x * q[3] + m_y * q.z() - m_z * q.y(), m_unusedW * q.y() + m_y * q[3] + m_z * q.x() - m_x * q.z(), m_unusedW * q.z() + m_z * q[3] + m_x * q.y() - m_y * q.x(), m_unusedW * q[3] - m_x * q.x() - m_y * q.y() - m_z * q.z()); return *this; } SimdScalar dot(const SimdQuaternion& q) const { return m_x * q.x() + m_y * q.y() + m_z * q.z() + m_unusedW * q[3]; } SimdScalar length2() const { return dot(*this); } SimdScalar length() const { return sqrtf(length2()); } SimdQuaternion& normalize() { return *this /= length(); } SIMD_FORCE_INLINE SimdQuaternion operator*(const SimdScalar& s) const { return SimdQuaternion(x() * s, y() * s, z() * s, m_unusedW * s); } SimdQuaternion operator/(const SimdScalar& s) const { assert(s != SimdScalar(0.0)); return *this * (SimdScalar(1.0) / s); } SimdQuaternion& operator/=(const SimdScalar& s) { assert(s != SimdScalar(0.0)); return *this *= SimdScalar(1.0) / s; } SimdQuaternion normalized() const { return *this / length(); } SimdScalar angle(const SimdQuaternion& q) const { SimdScalar s = sqrtf(length2() * q.length2()); assert(s != SimdScalar(0.0)); return acosf(dot(q) / s); } SimdScalar getAngle() const { SimdScalar s = 2.f * acosf(m_unusedW); return s; } SimdQuaternion inverse() const { return SimdQuaternion(m_x, m_y, m_z, -m_unusedW); } SIMD_FORCE_INLINE SimdQuaternion operator+(const SimdQuaternion& q2) const { const SimdQuaternion& q1 = *this; return SimdQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1[3] + q2[3]); } SIMD_FORCE_INLINE SimdQuaternion operator-(const SimdQuaternion& q2) const { const SimdQuaternion& q1 = *this; return SimdQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1[3] - q2[3]); } SIMD_FORCE_INLINE SimdQuaternion operator-() const { const SimdQuaternion& q2 = *this; return SimdQuaternion( - q2.x(), - q2.y(), - q2.z(), - q2[3]); } SIMD_FORCE_INLINE SimdQuaternion farthest( const SimdQuaternion& qd) const { SimdQuaternion diff,sum; diff = *this - qd; sum = *this + qd; if( diff.dot(diff) > sum.dot(sum) ) return qd; return (-qd); } SimdQuaternion slerp(const SimdQuaternion& q, const SimdScalar& t) const { SimdScalar theta = angle(q); if (theta != SimdScalar(0.0)) { SimdScalar d = SimdScalar(1.0) / sinf(theta); SimdScalar s0 = sinf((SimdScalar(1.0) - t) * theta); SimdScalar s1 = sinf(t * theta); return SimdQuaternion((m_x * s0 + q.x() * s1) * d, (m_y * s0 + q.y() * s1) * d, (m_z * s0 + q.z() * s1) * d, (m_unusedW * s0 + q[3] * s1) * d); } else { return *this; } } }; SIMD_FORCE_INLINE SimdQuaternion operator-(const SimdQuaternion& q) { return SimdQuaternion(-q.x(), -q.y(), -q.z(), -q[3]); } SIMD_FORCE_INLINE SimdQuaternion operator*(const SimdQuaternion& q1, const SimdQuaternion& q2) { return SimdQuaternion(q1[3] * q2.x() + q1.x() * q2[3] + q1.y() * q2.z() - q1.z() * q2.y(), q1[3] * q2.y() + q1.y() * q2[3] + q1.z() * q2.x() - q1.x() * q2.z(), q1[3] * q2.z() + q1.z() * q2[3] + q1.x() * q2.y() - q1.y() * q2.x(), q1[3] * q2[3] - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z()); } SIMD_FORCE_INLINE SimdQuaternion operator*(const SimdQuaternion& q, const SimdVector3& w) { return SimdQuaternion( q[3] * w.x() + q.y() * w.z() - q.z() * w.y(), q[3] * w.y() + q.z() * w.x() - q.x() * w.z(), q[3] * w.z() + q.x() * w.y() - q.y() * w.x(), -q.x() * w.x() - q.y() * w.y() - q.z() * w.z()); } SIMD_FORCE_INLINE SimdQuaternion operator*(const SimdVector3& w, const SimdQuaternion& q) { return SimdQuaternion( w.x() * q[3] + w.y() * q.z() - w.z() * q.y(), w.y() * q[3] + w.z() * q.x() - w.x() * q.z(), w.z() * q[3] + w.x() * q.y() - w.y() * q.x(), -w.x() * q.x() - w.y() * q.y() - w.z() * q.z()); } SIMD_FORCE_INLINE SimdScalar dot(const SimdQuaternion& q1, const SimdQuaternion& q2) { return q1.dot(q2); } SIMD_FORCE_INLINE SimdScalar length(const SimdQuaternion& q) { return q.length(); } SIMD_FORCE_INLINE SimdScalar angle(const SimdQuaternion& q1, const SimdQuaternion& q2) { return q1.angle(q2); } SIMD_FORCE_INLINE SimdQuaternion inverse(const SimdQuaternion& q) { return q.inverse(); } SIMD_FORCE_INLINE SimdQuaternion slerp(const SimdQuaternion& q1, const SimdQuaternion& q2, const SimdScalar& t) { return q1.slerp(q2, t); } #endif