/** * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** * Game object wrapper */ #ifdef HAVE_CONFIG_H #include #endif #if defined(_WIN64) typedef unsigned __int64 uint_ptr; #else typedef unsigned long uint_ptr; #endif #ifdef WIN32 // This warning tells us about truncation of __long__ stl-generated names. // It can occasionally cause DevStudio to have internal compiler warnings. #pragma warning( disable : 4786 ) #endif #define KX_INERTIA_INFINITE 10000 #include "RAS_IPolygonMaterial.h" #include "KX_BlenderMaterial.h" #include "KX_GameObject.h" #include "RAS_MeshObject.h" #include "KX_MeshProxy.h" #include "KX_PolyProxy.h" #include // printf #include "SG_Controller.h" #include "KX_IPhysicsController.h" #include "SG_Node.h" #include "SG_Controller.h" #include "KX_ClientObjectInfo.h" #include "RAS_BucketManager.h" #include "KX_RayCast.h" #include "KX_PythonInit.h" #include "KX_PyMath.h" #include "SCA_IActuator.h" #include "SCA_ISensor.h" #include "PyObjectPlus.h" /* python stuff */ // This file defines relationships between parents and children // in the game engine. #include "KX_SG_NodeRelationships.h" KX_GameObject::KX_GameObject( void* sgReplicationInfo, SG_Callbacks callbacks, PyTypeObject* T ) : SCA_IObject(T), m_bDyna(false), m_layer(0), m_pBlenderObject(NULL), m_pBlenderGroupObject(NULL), m_bSuspendDynamics(false), m_bUseObjectColor(false), m_bIsNegativeScaling(false), m_bVisible(true), m_bCulled(true), m_pPhysicsController1(NULL), m_pPhysicsEnvironment(NULL), m_xray(false), m_pHitObject(NULL), m_isDeformable(false) { m_ignore_activity_culling = false; m_pClient_info = new KX_ClientObjectInfo(this, KX_ClientObjectInfo::ACTOR); m_pSGNode = new SG_Node(this,sgReplicationInfo,callbacks); // define the relationship between this node and it's parent. KX_NormalParentRelation * parent_relation = KX_NormalParentRelation::New(); m_pSGNode->SetParentRelation(parent_relation); }; KX_GameObject::~KX_GameObject() { RemoveMeshes(); // is this delete somewhere ? //if (m_sumoObj) // delete m_sumoObj; delete m_pClient_info; //if (m_pSGNode) // delete m_pSGNode; if (m_pSGNode) { // must go through controllers and make sure they will not use us anymore // This is important for KX_BulletPhysicsControllers that unregister themselves // from the object when they are deleted. SGControllerList::iterator contit; SGControllerList& controllers = m_pSGNode->GetSGControllerList(); for (contit = controllers.begin();contit!=controllers.end();++contit) { (*contit)->ClearObject(); } m_pSGNode->SetSGClientObject(NULL); } } CValue* KX_GameObject:: Calc(VALUE_OPERATOR op, CValue *val) { return NULL; } CValue* KX_GameObject::CalcFinal(VALUE_DATA_TYPE dtype, VALUE_OPERATOR op, CValue *val) { return NULL; } const STR_String & KX_GameObject::GetText() { return m_text; } float KX_GameObject::GetNumber() { return 0; } STR_String KX_GameObject::GetName() { return m_name; } void KX_GameObject::SetName(STR_String name) { m_name = name; }; // Set the name of the value void KX_GameObject::ReplicaSetName(STR_String name) { } KX_IPhysicsController* KX_GameObject::GetPhysicsController() { return m_pPhysicsController1; } KX_GameObject* KX_GameObject::GetParent() { KX_GameObject* result = NULL; SG_Node* node = m_pSGNode; while (node && !result) { node = node->GetSGParent(); if (node) result = (KX_GameObject*)node->GetSGClientObject(); } if (result) result->AddRef(); return result; } void KX_GameObject::SetParent(KX_Scene *scene, KX_GameObject* obj) { // check on valid node in case a python controller holds a reference to a deleted object if (obj && GetSGNode() && obj->GetSGNode() && GetSGNode()->GetSGParent() != obj->GetSGNode()) { // Make sure the objects have some scale MT_Vector3 scale1 = NodeGetWorldScaling(); MT_Vector3 scale2 = obj->NodeGetWorldScaling(); if (fabs(scale2[0]) < FLT_EPSILON || fabs(scale2[1]) < FLT_EPSILON || fabs(scale2[2]) < FLT_EPSILON || fabs(scale1[0]) < FLT_EPSILON || fabs(scale1[1]) < FLT_EPSILON || fabs(scale1[2]) < FLT_EPSILON) { return; } // Remove us from our old parent and set our new parent RemoveParent(scene); obj->GetSGNode()->AddChild(GetSGNode()); if (m_pPhysicsController1) { m_pPhysicsController1->SuspendDynamics(true); } // Set us to our new scale, position, and orientation scale2[0] = 1.0/scale2[0]; scale2[1] = 1.0/scale2[1]; scale2[2] = 1.0/scale2[2]; scale1 = scale1 * scale2; MT_Matrix3x3 invori = obj->NodeGetWorldOrientation().inverse(); MT_Vector3 newpos = invori*(NodeGetWorldPosition()-obj->NodeGetWorldPosition())*scale2; NodeSetLocalScale(scale1); NodeSetLocalPosition(MT_Point3(newpos[0],newpos[1],newpos[2])); NodeSetLocalOrientation(invori*NodeGetWorldOrientation()); NodeUpdateGS(0.f,true); // object will now be a child, it must be removed from the parent list CListValue* rootlist = scene->GetRootParentList(); if (rootlist->RemoveValue(this)) // the object was in parent list, decrement ref count as it's now removed Release(); } } void KX_GameObject::RemoveParent(KX_Scene *scene) { // check on valid node in case a python controller holds a reference to a deleted object if (GetSGNode() && GetSGNode()->GetSGParent()) { // Set us to the right spot GetSGNode()->SetLocalScale(GetSGNode()->GetWorldScaling()); GetSGNode()->SetLocalOrientation(GetSGNode()->GetWorldOrientation()); GetSGNode()->SetLocalPosition(GetSGNode()->GetWorldPosition()); // Remove us from our parent GetSGNode()->DisconnectFromParent(); NodeUpdateGS(0.f,true); // the object is now a root object, add it to the parentlist CListValue* rootlist = scene->GetRootParentList(); if (!rootlist->SearchValue(this)) // object was not in root list, add it now and increment ref count rootlist->Add(AddRef()); if (m_pPhysicsController1) { m_pPhysicsController1->RestoreDynamics(); } } } void KX_GameObject::ProcessReplica(KX_GameObject* replica) { replica->m_pPhysicsController1 = NULL; replica->m_pSGNode = NULL; replica->m_pClient_info = new KX_ClientObjectInfo(*m_pClient_info); replica->m_pClient_info->m_gameobject = replica; replica->m_state = 0; } CValue* KX_GameObject::GetReplica() { KX_GameObject* replica = new KX_GameObject(*this); // this will copy properties and so on... CValue::AddDataToReplica(replica); ProcessReplica(replica); return replica; } void KX_GameObject::ApplyForce(const MT_Vector3& force,bool local) { if (m_pPhysicsController1) m_pPhysicsController1->ApplyForce(force,local); } void KX_GameObject::ApplyTorque(const MT_Vector3& torque,bool local) { if (m_pPhysicsController1) m_pPhysicsController1->ApplyTorque(torque,local); } void KX_GameObject::ApplyMovement(const MT_Vector3& dloc,bool local) { if (m_pPhysicsController1) // (IsDynamic()) { m_pPhysicsController1->RelativeTranslate(dloc,local); } GetSGNode()->RelativeTranslate(dloc,GetSGNode()->GetSGParent(),local); } void KX_GameObject::ApplyRotation(const MT_Vector3& drot,bool local) { MT_Matrix3x3 rotmat(drot); GetSGNode()->RelativeRotate(rotmat,local); if (m_pPhysicsController1) { // (IsDynamic()) m_pPhysicsController1->RelativeRotate(rotmat,local); } } /** GetOpenGL Matrix, returns an OpenGL 'compatible' matrix */ double* KX_GameObject::GetOpenGLMatrix() { // todo: optimize and only update if necessary double* fl = m_OpenGL_4x4Matrix.getPointer(); MT_Transform trans; trans.setOrigin(GetSGNode()->GetWorldPosition()); trans.setBasis(GetSGNode()->GetWorldOrientation()); MT_Vector3 scaling = GetSGNode()->GetWorldScaling(); m_bIsNegativeScaling = ((scaling[0] < 0.0) ^ (scaling[1] < 0.0) ^ (scaling[2] < 0.0)) ? true : false; trans.scale(scaling[0], scaling[1], scaling[2]); trans.getValue(fl); return fl; } void KX_GameObject::AddMeshUser() { for (size_t i=0;iAddMeshUser(this); UpdateBuckets(false); } static void UpdateBuckets_recursive(SG_Node* node) { NodeList& children = node->GetSGChildren(); for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit) { SG_Node* childnode = (*childit); KX_GameObject *clientgameobj = static_cast( (*childit)->GetSGClientObject()); if (clientgameobj != NULL) // This is a GameObject clientgameobj->UpdateBuckets(0); // if the childobj is NULL then this may be an inverse parent link // so a non recursive search should still look down this node. UpdateBuckets_recursive(childnode); } } void KX_GameObject::UpdateBuckets( bool recursive ) { double* fl = GetOpenGLMatrix(); for (size_t i=0;iUpdateBuckets(this, fl, m_bUseObjectColor, m_objectColor, m_bVisible, m_bCulled); if (recursive) { UpdateBuckets_recursive(m_pSGNode); } } void KX_GameObject::RemoveMeshes() { for (size_t i=0;iRemoveFromBuckets(this); //note: meshes can be shared, and are deleted by KX_BlenderSceneConverter m_meshes.clear(); } void KX_GameObject::UpdateNonDynas() { if (m_pPhysicsController1) { m_pPhysicsController1->SetSumoTransform(true); } } void KX_GameObject::UpdateTransform() { if (m_pPhysicsController1) m_pPhysicsController1->SetSumoTransform(false); } void KX_GameObject::UpdateTransformFunc(SG_IObject* node, void* gameobj, void* scene) { ((KX_GameObject*)gameobj)->UpdateTransform(); } void KX_GameObject::SetDebugColor(unsigned int bgra) { for (size_t i=0;iDebugColor(bgra); } void KX_GameObject::ResetDebugColor() { SetDebugColor(0xff000000); } void KX_GameObject::InitIPO(bool ipo_as_force, bool ipo_add, bool ipo_local) { SGControllerList::iterator it = GetSGNode()->GetSGControllerList().begin(); while (it != GetSGNode()->GetSGControllerList().end()) { (*it)->SetOption(SG_Controller::SG_CONTR_IPO_RESET, true); (*it)->SetOption(SG_Controller::SG_CONTR_IPO_IPO_AS_FORCE, ipo_as_force); (*it)->SetOption(SG_Controller::SG_CONTR_IPO_IPO_ADD, ipo_add); (*it)->SetOption(SG_Controller::SG_CONTR_IPO_LOCAL, ipo_local); it++; } } void KX_GameObject::UpdateIPO(float curframetime, bool recurse) { // just the 'normal' update procedure. GetSGNode()->SetSimulatedTime(curframetime,recurse); GetSGNode()->UpdateWorldData(curframetime); UpdateTransform(); } // IPO update void KX_GameObject::UpdateMaterialData( dword matname_hash, MT_Vector4 rgba, MT_Vector3 specrgb, MT_Scalar hard, MT_Scalar spec, MT_Scalar ref, MT_Scalar emit, MT_Scalar alpha ) { int mesh = 0; if (((unsigned int)mesh < m_meshes.size()) && mesh >= 0) { list::iterator mit = m_meshes[mesh]->GetFirstMaterial(); for(; mit != m_meshes[mesh]->GetLastMaterial(); ++mit) { RAS_IPolyMaterial* poly = mit->m_bucket->GetPolyMaterial(); if(poly->GetFlag() & RAS_BLENDERMAT ) { KX_BlenderMaterial *m = static_cast(poly); if (matname_hash == NULL) { m->UpdateIPO(rgba, specrgb,hard,spec,ref,emit, alpha); // if mesh has only one material attached to it then use original hack with no need to edit vertices (better performance) SetObjectColor(rgba); } else { if (matname_hash == poly->GetMaterialNameHash()) { m->UpdateIPO(rgba, specrgb,hard,spec,ref,emit, alpha); m_meshes[mesh]->SetVertexColor(poly,rgba); // no break here, because one blender material can be split into several game engine materials // (e.g. one uvsphere material is split into one material at poles with ras_mode TRIANGLE and one material for the body // if here was a break then would miss some vertices if material was split } } } } } } bool KX_GameObject::GetVisible( void ) { return m_bVisible; } static void setVisible_recursive(SG_Node* node, bool v) { NodeList& children = node->GetSGChildren(); for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit) { SG_Node* childnode = (*childit); KX_GameObject *clientgameobj = static_cast( (*childit)->GetSGClientObject()); if (clientgameobj != NULL) // This is a GameObject clientgameobj->SetVisible(v, 0); // if the childobj is NULL then this may be an inverse parent link // so a non recursive search should still look down this node. setVisible_recursive(childnode, v); } } void KX_GameObject::SetVisible( bool v, bool recursive ) { m_bVisible = v; if (recursive) setVisible_recursive(m_pSGNode, v); } bool KX_GameObject::GetCulled( void ) { return m_bCulled; } void KX_GameObject::SetCulled( bool c ) { m_bCulled = c; } void KX_GameObject::SetLayer( int l ) { m_layer = l; } int KX_GameObject::GetLayer( void ) { return m_layer; } void KX_GameObject::addLinearVelocity(const MT_Vector3& lin_vel,bool local) { if (m_pPhysicsController1) { MT_Vector3 lv = local ? NodeGetWorldOrientation() * lin_vel : lin_vel; m_pPhysicsController1->SetLinearVelocity(lv + m_pPhysicsController1->GetLinearVelocity(), 0); } } void KX_GameObject::setLinearVelocity(const MT_Vector3& lin_vel,bool local) { if (m_pPhysicsController1) m_pPhysicsController1->SetLinearVelocity(lin_vel,local); } void KX_GameObject::setAngularVelocity(const MT_Vector3& ang_vel,bool local) { if (m_pPhysicsController1) m_pPhysicsController1->SetAngularVelocity(ang_vel,local); } void KX_GameObject::ResolveCombinedVelocities( const MT_Vector3 & lin_vel, const MT_Vector3 & ang_vel, bool lin_vel_local, bool ang_vel_local ){ if (m_pPhysicsController1) { MT_Vector3 lv = lin_vel_local ? NodeGetWorldOrientation() * lin_vel : lin_vel; MT_Vector3 av = ang_vel_local ? NodeGetWorldOrientation() * ang_vel : ang_vel; m_pPhysicsController1->resolveCombinedVelocities( lv.x(),lv.y(),lv.z(),av.x(),av.y(),av.z()); } } void KX_GameObject::SetObjectColor(const MT_Vector4& rgbavec) { m_bUseObjectColor = true; m_objectColor = rgbavec; } void KX_GameObject::AlignAxisToVect(const MT_Vector3& dir, int axis, float fac) { MT_Matrix3x3 orimat; MT_Vector3 vect,ori,z,x,y; MT_Scalar len; // check on valid node in case a python controller holds a reference to a deleted object if (!GetSGNode()) return; vect = dir; len = vect.length(); if (MT_fuzzyZero(len)) { cout << "alignAxisToVect() Error: Null vector!\n"; return; } if (fac<=0.0) { return; } // normalize vect /= len; orimat = GetSGNode()->GetWorldOrientation(); switch (axis) { case 0: //x axis ori = MT_Vector3(orimat[0][2], orimat[1][2], orimat[2][2]); //pivot axis if (MT_abs(vect.dot(ori)) > 1.0-3.0*MT_EPSILON) //is the vector paralell to the pivot? ori = MT_Vector3(orimat[0][1], orimat[1][1], orimat[2][1]); //change the pivot! if (fac == 1.0) { x = vect; } else { x = (vect * fac) + ((orimat * MT_Vector3(1.0, 0.0, 0.0)) * (1-fac)); len = x.length(); if (MT_fuzzyZero(len)) x = vect; else x /= len; } y = ori.cross(x); z = x.cross(y); break; case 1: //y axis ori = MT_Vector3(orimat[0][0], orimat[1][0], orimat[2][0]); if (MT_abs(vect.dot(ori)) > 1.0-3.0*MT_EPSILON) ori = MT_Vector3(orimat[0][2], orimat[1][2], orimat[2][2]); if (fac == 1.0) { y = vect; } else { y = (vect * fac) + ((orimat * MT_Vector3(0.0, 1.0, 0.0)) * (1-fac)); len = y.length(); if (MT_fuzzyZero(len)) y = vect; else y /= len; } z = ori.cross(y); x = y.cross(z); break; case 2: //z axis ori = MT_Vector3(orimat[0][1], orimat[1][1], orimat[2][1]); if (MT_abs(vect.dot(ori)) > 1.0-3.0*MT_EPSILON) ori = MT_Vector3(orimat[0][0], orimat[1][0], orimat[2][0]); if (fac == 1.0) { z = vect; } else { z = (vect * fac) + ((orimat * MT_Vector3(0.0, 0.0, 1.0)) * (1-fac)); len = z.length(); if (MT_fuzzyZero(len)) z = vect; else z /= len; } x = ori.cross(z); y = z.cross(x); break; default: //wrong input? cout << "alignAxisToVect(): Wrong axis '" << axis <<"'\n"; return; } x.normalize(); //normalize the vectors y.normalize(); z.normalize(); orimat = MT_Matrix3x3( x[0],y[0],z[0], x[1],y[1],z[1], x[2],y[2],z[2]); if (GetSGNode()->GetSGParent() != NULL) { // the object is a child, adapt its local orientation so that // the global orientation is aligned as we want. MT_Matrix3x3 invori = GetSGNode()->GetSGParent()->GetWorldOrientation().inverse(); NodeSetLocalOrientation(invori*orimat); } else NodeSetLocalOrientation(orimat); } MT_Scalar KX_GameObject::GetMass() { if (m_pPhysicsController1) { return m_pPhysicsController1->GetMass(); } return 0.0; } MT_Vector3 KX_GameObject::GetLinearVelocity(bool local) { MT_Vector3 velocity(0.0,0.0,0.0), locvel; MT_Matrix3x3 ori; if (m_pPhysicsController1) { velocity = m_pPhysicsController1->GetLinearVelocity(); if (local) { ori = GetSGNode()->GetWorldOrientation(); locvel = velocity * ori; return locvel; } } return velocity; } MT_Vector3 KX_GameObject::GetAngularVelocity(bool local) { MT_Vector3 velocity(0.0,0.0,0.0), locvel; MT_Matrix3x3 ori; if (m_pPhysicsController1) { velocity = m_pPhysicsController1->GetAngularVelocity(); if (local) { ori = GetSGNode()->GetWorldOrientation(); locvel = velocity * ori; return locvel; } } return velocity; } MT_Vector3 KX_GameObject::GetVelocity(const MT_Point3& point) { if (m_pPhysicsController1) { return m_pPhysicsController1->GetVelocity(point); } return MT_Vector3(0.0,0.0,0.0); } // scenegraph node stuff void KX_GameObject::NodeSetLocalPosition(const MT_Point3& trans) { // check on valid node in case a python controller holds a reference to a deleted object if (!GetSGNode()) return; if (m_pPhysicsController1 && !GetSGNode()->GetSGParent()) { // don't update physic controller if the object is a child: // 1) the transformation will not be right // 2) in this case, the physic controller is necessarily a static object // that is updated from the normal kinematic synchronization m_pPhysicsController1->setPosition(trans); } GetSGNode()->SetLocalPosition(trans); } void KX_GameObject::NodeSetLocalOrientation(const MT_Matrix3x3& rot) { // check on valid node in case a python controller holds a reference to a deleted object if (!GetSGNode()) return; if (m_pPhysicsController1 && !GetSGNode()->GetSGParent()) { // see note above m_pPhysicsController1->setOrientation(rot); } GetSGNode()->SetLocalOrientation(rot); } void KX_GameObject::NodeSetLocalScale(const MT_Vector3& scale) { // check on valid node in case a python controller holds a reference to a deleted object if (!GetSGNode()) return; if (m_pPhysicsController1 && !GetSGNode()->GetSGParent()) { // see note above m_pPhysicsController1->setScaling(scale); } GetSGNode()->SetLocalScale(scale); } void KX_GameObject::NodeSetRelativeScale(const MT_Vector3& scale) { if (GetSGNode()) { GetSGNode()->RelativeScale(scale); if (m_pPhysicsController1 && (!GetSGNode()->GetSGParent())) { // see note above // we can use the local scale: it's the same thing for a root object // and the world scale is not yet updated MT_Vector3 newscale = GetSGNode()->GetLocalScale(); m_pPhysicsController1->setScaling(newscale); } } } void KX_GameObject::NodeSetWorldPosition(const MT_Point3& trans) { SG_Node* parent = m_pSGNode->GetSGParent(); if (parent != NULL) { // Make sure the objects have some scale MT_Vector3 scale = parent->GetWorldScaling(); if (fabs(scale[0]) < FLT_EPSILON || fabs(scale[1]) < FLT_EPSILON || fabs(scale[2]) < FLT_EPSILON) { return; } scale[0] = 1.0/scale[0]; scale[1] = 1.0/scale[1]; scale[2] = 1.0/scale[2]; MT_Matrix3x3 invori = parent->GetWorldOrientation().inverse(); MT_Vector3 newpos = invori*(trans-parent->GetWorldPosition())*scale; NodeSetLocalPosition(MT_Point3(newpos[0],newpos[1],newpos[2])); } else { NodeSetLocalPosition(trans); } } void KX_GameObject::NodeUpdateGS(double time,bool bInitiator) { if (GetSGNode()) GetSGNode()->UpdateWorldData(time); } const MT_Matrix3x3& KX_GameObject::NodeGetWorldOrientation() const { static MT_Matrix3x3 defaultOrientation = MT_Matrix3x3( 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0); // check on valid node in case a python controller holds a reference to a deleted object if (!GetSGNode()) return defaultOrientation; return GetSGNode()->GetWorldOrientation(); } const MT_Vector3& KX_GameObject::NodeGetWorldScaling() const { static MT_Vector3 defaultScaling = MT_Vector3(1.0, 1.0, 1.0); // check on valid node in case a python controller holds a reference to a deleted object if (!GetSGNode()) return defaultScaling; return GetSGNode()->GetWorldScaling(); } const MT_Point3& KX_GameObject::NodeGetWorldPosition() const { static MT_Point3 defaultPosition = MT_Point3(0.0, 0.0, 0.0); // check on valid node in case a python controller holds a reference to a deleted object if (!GetSGNode()) return defaultPosition; return GetSGNode()->GetWorldPosition(); } /* Suspend/ resume: for the dynamic behaviour, there is a simple * method. For the residual motion, there is not. I wonder what the * correct solution is for Sumo. Remove from the motion-update tree? * * So far, only switch the physics and logic. * */ void KX_GameObject::Resume(void) { if (m_suspended) { SCA_IObject::Resume(); GetPhysicsController()->RestoreDynamics(); m_suspended = false; } } void KX_GameObject::Suspend() { if ((!m_ignore_activity_culling) && (!m_suspended)) { SCA_IObject::Suspend(); GetPhysicsController()->SuspendDynamics(); m_suspended = true; } } /* ------- python stuff ---------------------------------------------------*/ PyMethodDef KX_GameObject::Methods[] = { {"getPosition", (PyCFunction) KX_GameObject::sPyGetPosition, METH_NOARGS}, {"setPosition", (PyCFunction) KX_GameObject::sPySetPosition, METH_O}, {"setWorldPosition", (PyCFunction) KX_GameObject::sPySetWorldPosition, METH_O}, {"applyForce", (PyCFunction) KX_GameObject::sPyApplyForce, METH_VARARGS}, {"applyTorque", (PyCFunction) KX_GameObject::sPyApplyTorque, METH_VARARGS}, {"applyRotation", (PyCFunction) KX_GameObject::sPyApplyRotation, METH_VARARGS}, {"applyMovement", (PyCFunction) KX_GameObject::sPyApplyMovement, METH_VARARGS}, {"getLinearVelocity", (PyCFunction) KX_GameObject::sPyGetLinearVelocity, METH_VARARGS}, {"setLinearVelocity", (PyCFunction) KX_GameObject::sPySetLinearVelocity, METH_VARARGS}, {"getAngularVelocity", (PyCFunction) KX_GameObject::sPyGetAngularVelocity, METH_VARARGS}, {"setAngularVelocity", (PyCFunction) KX_GameObject::sPySetAngularVelocity, METH_VARARGS}, {"getVelocity", (PyCFunction) KX_GameObject::sPyGetVelocity, METH_VARARGS}, {"getMass", (PyCFunction) KX_GameObject::sPyGetMass, METH_NOARGS}, {"getReactionForce", (PyCFunction) KX_GameObject::sPyGetReactionForce, METH_NOARGS}, {"getOrientation", (PyCFunction) KX_GameObject::sPyGetOrientation, METH_NOARGS}, {"setOrientation", (PyCFunction) KX_GameObject::sPySetOrientation, METH_O}, {"getVisible",(PyCFunction) KX_GameObject::sPyGetVisible, METH_NOARGS}, {"setVisible",(PyCFunction) KX_GameObject::sPySetVisible, METH_VARARGS}, {"getState",(PyCFunction) KX_GameObject::sPyGetState, METH_NOARGS}, {"setState",(PyCFunction) KX_GameObject::sPySetState, METH_O}, {"alignAxisToVect",(PyCFunction) KX_GameObject::sPyAlignAxisToVect, METH_VARARGS}, {"getAxisVect",(PyCFunction) KX_GameObject::sPyGetAxisVect, METH_O}, {"suspendDynamics", (PyCFunction)KX_GameObject::sPySuspendDynamics,METH_NOARGS}, {"restoreDynamics", (PyCFunction)KX_GameObject::sPyRestoreDynamics,METH_NOARGS}, {"enableRigidBody", (PyCFunction)KX_GameObject::sPyEnableRigidBody,METH_NOARGS}, {"disableRigidBody", (PyCFunction)KX_GameObject::sPyDisableRigidBody,METH_NOARGS}, {"applyImpulse", (PyCFunction) KX_GameObject::sPyApplyImpulse, METH_VARARGS}, {"setCollisionMargin", (PyCFunction) KX_GameObject::sPySetCollisionMargin, METH_O}, {"getParent", (PyCFunction)KX_GameObject::sPyGetParent,METH_NOARGS}, {"setParent", (PyCFunction)KX_GameObject::sPySetParent,METH_O}, {"removeParent", (PyCFunction)KX_GameObject::sPyRemoveParent,METH_NOARGS}, {"getChildren", (PyCFunction)KX_GameObject::sPyGetChildren,METH_NOARGS}, {"getChildrenRecursive", (PyCFunction)KX_GameObject::sPyGetChildrenRecursive,METH_NOARGS}, {"getMesh", (PyCFunction)KX_GameObject::sPyGetMesh,METH_VARARGS}, {"getPhysicsId", (PyCFunction)KX_GameObject::sPyGetPhysicsId,METH_NOARGS}, {"getPropertyNames", (PyCFunction)KX_GameObject::sPyGetPropertyNames,METH_NOARGS}, {"replaceMesh",(PyCFunction) KX_GameObject::sPyReplaceMesh, METH_O}, {"endObject",(PyCFunction) KX_GameObject::sPyEndObject, METH_NOARGS}, KX_PYMETHODTABLE(KX_GameObject, rayCastTo), KX_PYMETHODTABLE(KX_GameObject, rayCast), KX_PYMETHODTABLE(KX_GameObject, getDistanceTo), KX_PYMETHODTABLE(KX_GameObject, getVectTo), {NULL,NULL} //Sentinel }; /* bool KX_GameObject::ConvertPythonVectorArgs(PyObject* args, MT_Vector3& pos, MT_Vector3& pos2) { PyObject* pylist; PyObject* pylist2; bool error = (PyArg_ParseTuple(args,"OO",&pylist,&pylist2)) != 0; pos = ConvertPythonPylist(pylist); pos2 = ConvertPythonPylist(pylist2); return error; } */ PyObject* KX_GameObject::PyReplaceMesh(PyObject* self, PyObject* value) { KX_Scene *scene = KX_GetActiveScene(); char* meshname; void* mesh_pt; meshname = PyString_AsString(value); if (meshname==NULL) { PyErr_SetString(PyExc_ValueError, "Expected a mesh name"); return NULL; } mesh_pt = SCA_ILogicBrick::m_sCurrentLogicManager->GetMeshByName(STR_String(meshname)); if (mesh_pt==NULL) { PyErr_SetString(PyExc_ValueError, "The mesh name given does not exist"); return NULL; } scene->ReplaceMesh(this, (class RAS_MeshObject*)mesh_pt); Py_RETURN_NONE; } PyObject* KX_GameObject::PyEndObject(PyObject* self) { KX_Scene *scene = KX_GetActiveScene(); scene->DelayedRemoveObject(this); Py_RETURN_NONE; } PyObject* KX_GameObject::PyGetPosition(PyObject* self) { return PyObjectFrom(NodeGetWorldPosition()); } PyTypeObject KX_GameObject::Type = { PyObject_HEAD_INIT(&PyType_Type) 0, "KX_GameObject", sizeof(KX_GameObject), 0, PyDestructor, 0, __getattr, __setattr, 0, //&MyPyCompare, __repr, 0, //&cvalue_as_number, 0, 0, 0, 0 }; PyParentObject KX_GameObject::Parents[] = { &KX_GameObject::Type, &SCA_IObject::Type, &CValue::Type, NULL }; PyObject* KX_GameObject::_getattr(const STR_String& attr) { if (m_pPhysicsController1) { if (attr == "mass") return PyFloat_FromDouble(GetPhysicsController()->GetMass()); } if (attr == "parent") { KX_GameObject* parent = GetParent(); if (parent) { parent->AddRef(); return parent; } Py_RETURN_NONE; } if (attr == "visible") return PyInt_FromLong(m_bVisible); if (attr == "position") return PyObjectFrom(NodeGetWorldPosition()); if (attr == "orientation") return PyObjectFrom(NodeGetWorldOrientation()); if (attr == "scaling") return PyObjectFrom(NodeGetWorldScaling()); if (attr == "name") return PyString_FromString(m_name.ReadPtr()); if (attr == "timeOffset") { if (m_pSGNode->GetSGParent()->IsSlowParent()) { return PyFloat_FromDouble(static_cast(m_pSGNode->GetSGParent()->GetParentRelation())->GetTimeOffset()); } else { return PyFloat_FromDouble(0.0); } } _getattr_up(SCA_IObject); } int KX_GameObject::_setattr(const STR_String& attr, PyObject *value) // _setattr method { if (attr == "mass") { PyErr_SetString(PyExc_AttributeError, "attribute \"mass\" is read only"); return 1; } if (attr == "parent") { PyErr_SetString(PyExc_AttributeError, "attribute \"mass\" is read only\nUse setParent()"); return 1; } if (PyInt_Check(value)) { int val = PyInt_AsLong(value); if (attr == "visible") { SetVisible(val != 0, false); UpdateBuckets(false); return 0; } } if (PyFloat_Check(value)) { MT_Scalar val = PyFloat_AsDouble(value); if (attr == "timeOffset") { if (m_pSGNode->GetSGParent() && m_pSGNode->GetSGParent()->IsSlowParent()) { static_cast(m_pSGNode->GetSGParent()->GetParentRelation())->SetTimeOffset(val); return 0; } else { return 0; } } } if (PySequence_Check(value)) { if (attr == "orientation") { MT_Matrix3x3 rot; if (PyObject_IsMT_Matrix(value, 3)) { if (PyMatTo(value, rot)) { NodeSetLocalOrientation(rot); NodeUpdateGS(0.f,true); return 0; } return 1; } if (PySequence_Size(value) == 4) { MT_Quaternion qrot; if (PyVecTo(value, qrot)) { rot.setRotation(qrot); NodeSetLocalOrientation(rot); NodeUpdateGS(0.f,true); return 0; } return 1; } if (PySequence_Size(value) == 3) { MT_Vector3 erot; if (PyVecTo(value, erot)) { rot.setEuler(erot); NodeSetLocalOrientation(rot); NodeUpdateGS(0.f,true); return 0; } return 1; } PyErr_SetString(PyExc_AttributeError, "could not set the orientation from a 3x3 matrix, quaternion or euler sequence"); return 1; } if (attr == "position") { MT_Point3 pos; if (PyVecTo(value, pos)) { NodeSetLocalPosition(pos); NodeUpdateGS(0.f,true); return 0; } return 1; } if (attr == "scaling") { MT_Vector3 scale; if (PyVecTo(value, scale)) { NodeSetLocalScale(scale); NodeUpdateGS(0.f,true); return 0; } return 1; } } if (PyString_Check(value)) { if (attr == "name") { m_name = PyString_AsString(value); return 0; } } /* Need to have parent settable here too */ return SCA_IObject::_setattr(attr, value); } PyObject* KX_GameObject::PyApplyForce(PyObject* self, PyObject* args) { int local = 0; PyObject* pyvect; if (PyArg_ParseTuple(args, "O|i", &pyvect, &local)) { MT_Vector3 force; if (PyVecTo(pyvect, force)) { ApplyForce(force, (local!=0)); Py_RETURN_NONE; } } return NULL; } PyObject* KX_GameObject::PyApplyTorque(PyObject* self, PyObject* args) { int local = 0; PyObject* pyvect; if (PyArg_ParseTuple(args, "O|i", &pyvect, &local)) { MT_Vector3 torque; if (PyVecTo(pyvect, torque)) { ApplyTorque(torque, (local!=0)); Py_RETURN_NONE; } } return NULL; } PyObject* KX_GameObject::PyApplyRotation(PyObject* self, PyObject* args) { int local = 0; PyObject* pyvect; if (PyArg_ParseTuple(args, "O|i", &pyvect, &local)) { MT_Vector3 rotation; if (PyVecTo(pyvect, rotation)) { ApplyRotation(rotation, (local!=0)); Py_RETURN_NONE; } } return NULL; } PyObject* KX_GameObject::PyApplyMovement(PyObject* self, PyObject* args) { int local = 0; PyObject* pyvect; if (PyArg_ParseTuple(args, "O|i", &pyvect, &local)) { MT_Vector3 movement; if (PyVecTo(pyvect, movement)) { ApplyMovement(movement, (local!=0)); Py_RETURN_NONE; } } return NULL; } PyObject* KX_GameObject::PyGetLinearVelocity(PyObject* self, PyObject* args) { // only can get the velocity if we have a physics object connected to us... int local = 0; if (PyArg_ParseTuple(args,"|i",&local)) { return PyObjectFrom(GetLinearVelocity((local!=0))); } else { return NULL; } } PyObject* KX_GameObject::PySetLinearVelocity(PyObject* self, PyObject* args) { int local = 0; PyObject* pyvect; if (PyArg_ParseTuple(args,"O|i",&pyvect,&local)) { MT_Vector3 velocity; if (PyVecTo(pyvect, velocity)) { setLinearVelocity(velocity, (local!=0)); Py_RETURN_NONE; } } return NULL; } PyObject* KX_GameObject::PyGetAngularVelocity(PyObject* self, PyObject* args) { // only can get the velocity if we have a physics object connected to us... int local = 0; if (PyArg_ParseTuple(args,"|i",&local)) { return PyObjectFrom(GetAngularVelocity((local!=0))); } else { return NULL; } } PyObject* KX_GameObject::PySetAngularVelocity(PyObject* self, PyObject* args) { int local = 0; PyObject* pyvect; if (PyArg_ParseTuple(args,"O|i",&pyvect,&local)) { MT_Vector3 velocity; if (PyVecTo(pyvect, velocity)) { setAngularVelocity(velocity, (local!=0)); Py_RETURN_NONE; } } return NULL; } PyObject* KX_GameObject::PySetVisible(PyObject* self, PyObject* args) { int visible, recursive = 0; if (!PyArg_ParseTuple(args,"i|i",&visible, &recursive)) return NULL; SetVisible(visible ? true:false, recursive ? true:false); UpdateBuckets(recursive ? true:false); Py_RETURN_NONE; } PyObject* KX_GameObject::PyGetVisible(PyObject* self) { return PyInt_FromLong(m_bVisible); } PyObject* KX_GameObject::PyGetState(PyObject* self) { int state = 0; state |= GetState(); return PyInt_FromLong(state); } PyObject* KX_GameObject::PySetState(PyObject* self, PyObject* value) { int state_i = PyInt_AsLong(value); unsigned int state = 0; if (state_i == -1 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "expected an int bit field"); return NULL; } state |= state_i; if ((state & ((1<<30)-1)) == 0) { PyErr_SetString(PyExc_AttributeError, "The state bitfield was not between 0 and 30 (1<<0 and 1<<29)"); return NULL; } SetState(state); Py_RETURN_NONE; } PyObject* KX_GameObject::PyGetVelocity(PyObject* self, PyObject* args) { // only can get the velocity if we have a physics object connected to us... MT_Vector3 velocity(0.0,0.0,0.0); MT_Point3 point(0.0,0.0,0.0); PyObject* pypos = NULL; if (PyArg_ParseTuple(args, "|O", &pypos)) { if (pypos) PyVecTo(pypos, point); } else { return NULL; } if (m_pPhysicsController1) { velocity = m_pPhysicsController1->GetVelocity(point); } return PyObjectFrom(velocity); } PyObject* KX_GameObject::PyGetMass(PyObject* self) { return PyFloat_FromDouble(GetPhysicsController()->GetMass()); } PyObject* KX_GameObject::PyGetReactionForce(PyObject* self) { // only can get the velocity if we have a physics object connected to us... return PyObjectFrom(GetPhysicsController()->getReactionForce()); } PyObject* KX_GameObject::PyEnableRigidBody(PyObject* self) { GetPhysicsController()->setRigidBody(true); Py_RETURN_NONE; } PyObject* KX_GameObject::PyDisableRigidBody(PyObject* self) { GetPhysicsController()->setRigidBody(false); Py_RETURN_NONE; } PyObject* KX_GameObject::PyGetParent(PyObject* self) { KX_GameObject* parent = this->GetParent(); if (parent) { parent->AddRef(); return parent; } Py_RETURN_NONE; } PyObject* KX_GameObject::PySetParent(PyObject* self, PyObject* value) { if (!PyObject_TypeCheck(value, &KX_GameObject::Type)) { PyErr_SetString(PyExc_TypeError, "expected a KX_GameObject type"); return NULL; } // The object we want to set as parent CValue *m_ob = (CValue*)value; KX_GameObject *obj = ((KX_GameObject*)m_ob); KX_Scene *scene = KX_GetActiveScene(); this->SetParent(scene, obj); Py_RETURN_NONE; } PyObject* KX_GameObject::PyRemoveParent(PyObject* self) { KX_Scene *scene = KX_GetActiveScene(); this->RemoveParent(scene); Py_RETURN_NONE; } static void walk_children(SG_Node* node, CListValue* list, bool recursive) { NodeList& children = node->GetSGChildren(); for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit) { SG_Node* childnode = (*childit); CValue* childobj = (CValue*)childnode->GetSGClientObject(); if (childobj != NULL) // This is a GameObject { // add to the list list->Add(childobj->AddRef()); } // if the childobj is NULL then this may be an inverse parent link // so a non recursive search should still look down this node. if (recursive || childobj==NULL) { walk_children(childnode, list, recursive); } } } PyObject* KX_GameObject::PyGetChildren(PyObject* self) { CListValue* list = new CListValue(); walk_children(m_pSGNode, list, 0); return list; } PyObject* KX_GameObject::PyGetChildrenRecursive(PyObject* self) { CListValue* list = new CListValue(); walk_children(m_pSGNode, list, 1); return list; } PyObject* KX_GameObject::PyGetMesh(PyObject* self, PyObject* args) { int mesh = 0; if (!PyArg_ParseTuple(args, "|i", &mesh)) return NULL; // python sets a simple error if (((unsigned int)mesh < m_meshes.size()) && mesh >= 0) { KX_MeshProxy* meshproxy = new KX_MeshProxy(m_meshes[mesh]); return meshproxy; } Py_RETURN_NONE; } PyObject* KX_GameObject::PySetCollisionMargin(PyObject* self, PyObject* value) { float collisionMargin = PyFloat_AsDouble(value); if (collisionMargin==-1 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "expected a float"); return NULL; } if (m_pPhysicsController1) { m_pPhysicsController1->setMargin(collisionMargin); Py_RETURN_NONE; } PyErr_SetString(PyExc_RuntimeError, "This object has no physics controller"); return NULL; } PyObject* KX_GameObject::PyApplyImpulse(PyObject* self, PyObject* args) { PyObject* pyattach; PyObject* pyimpulse; if (!m_pPhysicsController1) { PyErr_SetString(PyExc_RuntimeError, "This object has no physics controller"); return NULL; } if (PyArg_ParseTuple(args, "OO", &pyattach, &pyimpulse)) { MT_Point3 attach; MT_Vector3 impulse; if (PyVecTo(pyattach, attach) && PyVecTo(pyimpulse, impulse)) { m_pPhysicsController1->applyImpulse(attach, impulse); Py_RETURN_NONE; } } return NULL; } PyObject* KX_GameObject::PySuspendDynamics(PyObject* self) { SuspendDynamics(); Py_RETURN_NONE; } PyObject* KX_GameObject::PyRestoreDynamics(PyObject* self) { RestoreDynamics(); Py_RETURN_NONE; } PyObject* KX_GameObject::PyGetOrientation(PyObject* self) //keywords { return PyObjectFrom(NodeGetWorldOrientation()); } PyObject* KX_GameObject::PySetOrientation(PyObject* self, PyObject* value) { MT_Matrix3x3 matrix; if (PyObject_IsMT_Matrix(value, 3) && PyMatTo(value, matrix)) { NodeSetLocalOrientation(matrix); NodeUpdateGS(0.f,true); Py_RETURN_NONE; } MT_Quaternion quat; if (PyVecTo(value, quat)) { matrix.setRotation(quat); NodeSetLocalOrientation(matrix); NodeUpdateGS(0.f,true); Py_RETURN_NONE; } return NULL; } PyObject* KX_GameObject::PyAlignAxisToVect(PyObject* self, PyObject* args) { PyObject* pyvect; int axis = 2; //z axis is the default float fac = 1.0; if (PyArg_ParseTuple(args,"O|if",&pyvect,&axis, &fac)) { MT_Vector3 vect; if (PyVecTo(pyvect, vect)) { if (fac<=0.0) Py_RETURN_NONE; // Nothing to do. if (fac> 1.0) fac= 1.0; AlignAxisToVect(vect,axis,fac); NodeUpdateGS(0.f,true); Py_RETURN_NONE; } } return NULL; } PyObject* KX_GameObject::PyGetAxisVect(PyObject* self, PyObject* value) { MT_Vector3 vect; if (PyVecTo(value, vect)) { return PyObjectFrom(NodeGetWorldOrientation() * vect); } return NULL; } PyObject* KX_GameObject::PySetPosition(PyObject* self, PyObject* value) { MT_Point3 pos; if (PyVecTo(value, pos)) { NodeSetLocalPosition(pos); NodeUpdateGS(0.f,true); Py_RETURN_NONE; } return NULL; } PyObject* KX_GameObject::PySetWorldPosition(PyObject* self, PyObject* value) { MT_Point3 pos; if (PyVecTo(value, pos)) { NodeSetWorldPosition(pos); NodeUpdateGS(0.f,true); Py_RETURN_NONE; } return NULL; } PyObject* KX_GameObject::PyGetPhysicsId(PyObject* self) { KX_IPhysicsController* ctrl = GetPhysicsController(); uint_ptr physid=0; if (ctrl) { physid= (uint_ptr)ctrl->GetUserData(); } return PyInt_FromLong((long)physid); } PyObject* KX_GameObject::PyGetPropertyNames(PyObject* self) { return ConvertKeysToPython(); } KX_PYMETHODDEF_DOC(KX_GameObject, getDistanceTo, "getDistanceTo(other): get distance to another point/KX_GameObject") { MT_Point3 b; if (PyVecArgTo(args, b)) { return PyFloat_FromDouble(NodeGetWorldPosition().distance(b)); } PyErr_Clear(); PyObject *pyother; KX_GameObject *other; if (PyArg_ParseTuple(args, "O", &pyother) && ConvertPythonToGameObject(pyother, &other, false)) { return PyFloat_FromDouble(NodeGetWorldPosition().distance(other->NodeGetWorldPosition())); } return NULL; } KX_PYMETHODDEF_DOC(KX_GameObject, getVectTo, "getVectTo(other): get vector and the distance to another point/KX_GameObject\n" "Returns a 3-tuple with (distance,worldVector,localVector)\n") { MT_Point3 toPoint, fromPoint; MT_Vector3 toDir, locToDir; MT_Scalar distance; PyObject *returnValue; PyObject *pyother; if (!PyVecArgTo(args, toPoint)) { PyErr_Clear(); KX_GameObject *other; if (PyArg_ParseTuple(args, "O", &pyother) && ConvertPythonToGameObject(pyother, &other, false)) { toPoint = other->NodeGetWorldPosition(); } else { PyErr_SetString(PyExc_TypeError, "Expected a 3D Vector or GameObject type"); return NULL; } } fromPoint = NodeGetWorldPosition(); toDir = toPoint-fromPoint; distance = toDir.length(); if (MT_fuzzyZero(distance)) { //cout << "getVectTo() Error: Null vector!\n"; locToDir = toDir = MT_Vector3(0.0,0.0,0.0); distance = 0.0; } else { toDir.normalize(); locToDir = toDir * NodeGetWorldOrientation(); } returnValue = PyTuple_New(3); if (returnValue) { // very unlikely to fail, python sets a memory error here. PyTuple_SET_ITEM(returnValue, 0, PyFloat_FromDouble(distance)); PyTuple_SET_ITEM(returnValue, 1, PyObjectFrom(toDir)); PyTuple_SET_ITEM(returnValue, 2, PyObjectFrom(locToDir)); } return returnValue; } bool KX_GameObject::RayHit(KX_ClientObjectInfo* client, KX_RayCast* result, void * const data) { KX_GameObject* hitKXObj = client->m_gameobject; // if X-ray option is selected, the unwnted objects were not tested, so get here only with true hit // if not, all objects were tested and the front one may not be the correct one. if (m_xray || m_testPropName.Length() == 0 || hitKXObj->GetProperty(m_testPropName) != NULL) { m_pHitObject = hitKXObj; return true; } // return true to stop RayCast::RayTest from looping, the above test was decisive // We would want to loop only if we want to get more than one hit point return true; } /* this function is used to pre-filter the object before casting the ray on them. This is useful for "X-Ray" option when we want to see "through" unwanted object. */ bool KX_GameObject::NeedRayCast(KX_ClientObjectInfo* client) { KX_GameObject* hitKXObj = client->m_gameobject; if (client->m_type > KX_ClientObjectInfo::ACTOR) { // Unknown type of object, skip it. // Should not occur as the sensor objects are filtered in RayTest() printf("Invalid client type %d found in ray casting\n", client->m_type); return false; } // if X-Ray option is selected, skip object that don't match the criteria as we see through them // if not, test all objects because we don't know yet which one will be on front if (!m_xray || m_testPropName.Length() == 0 || hitKXObj->GetProperty(m_testPropName) != NULL) { return true; } // skip the object return false; } KX_PYMETHODDEF_DOC(KX_GameObject, rayCastTo, "rayCastTo(other,dist,prop): look towards another point/KX_GameObject and return first object hit within dist that matches prop\n" " prop = property name that object must have; can be omitted => detect any object\n" " dist = max distance to look (can be negative => look behind); 0 or omitted => detect up to other\n" " other = 3-tuple or object reference") { MT_Point3 toPoint; PyObject* pyarg; float dist = 0.0f; char *propName = NULL; if (!PyArg_ParseTuple(args,"O|fs", &pyarg, &dist, &propName)) { return NULL; // python sets simple error } if (!PyVecTo(pyarg, toPoint)) { KX_GameObject *other; PyErr_Clear(); if (ConvertPythonToGameObject(pyarg, &other, false)) { toPoint = other->NodeGetWorldPosition(); } else { PyErr_SetString(PyExc_TypeError, "the first argument to rayCastTo must be a vector or a KX_GameObject"); return NULL; } } MT_Point3 fromPoint = NodeGetWorldPosition(); if (dist != 0.0f) { MT_Vector3 toDir = toPoint-fromPoint; toDir.normalize(); toPoint = fromPoint + (dist) * toDir; } PHY_IPhysicsEnvironment* pe = GetPhysicsEnvironment(); KX_IPhysicsController *spc = GetPhysicsController(); KX_GameObject *parent = GetParent(); if (!spc && parent) spc = parent->GetPhysicsController(); if (parent) parent->Release(); m_pHitObject = NULL; if (propName) m_testPropName = propName; else m_testPropName.SetLength(0); KX_RayCast::Callback callback(this,spc); KX_RayCast::RayTest(pe, fromPoint, toPoint, callback); if (m_pHitObject) { m_pHitObject->AddRef(); return m_pHitObject; } Py_RETURN_NONE; } KX_PYMETHODDEF_DOC(KX_GameObject, rayCast, "rayCast(to,from,dist,prop,face,xray,poly): cast a ray and return 3-tuple (object,hit,normal) or 4-tuple (object,hit,normal,polygon) of contact point with object within dist that matches prop.\n" " If no hit, return (None,None,None) or (None,None,None,None).\n" " to = 3-tuple or object reference for destination of ray (if object, use center of object)\n" " from = 3-tuple or object reference for origin of ray (if object, use center of object)\n" " Can be None or omitted => start from self object center\n" " dist = max distance to look (can be negative => look behind); 0 or omitted => detect up to to\n" " prop = property name that object must have; can be omitted => detect any object\n" " face = normal option: 1=>return face normal; 0 or omitted => normal is oriented towards origin\n" " xray = X-ray option: 1=>skip objects that don't match prop; 0 or omitted => stop on first object\n" " poly = polygon option: 1=>return value is a 4-tuple and the 4th element is a KX_PolyProxy object\n" " which can be None if hit object has no mesh or if there is no hit\n" " If 0 or omitted, return value is a 3-tuple\n" "Note: The object on which you call this method matters: the ray will ignore it.\n" " prop and xray option interact as follow:\n" " prop off, xray off: return closest hit or no hit if there is no object on the full extend of the ray\n" " prop off, xray on : idem\n" " prop on, xray off: return closest hit if it matches prop, no hit otherwise\n" " prop on, xray on : return closest hit matching prop or no hit if there is no object matching prop on the full extend of the ray\n") { MT_Point3 toPoint; MT_Point3 fromPoint; PyObject* pyto; PyObject* pyfrom = NULL; float dist = 0.0f; char *propName = NULL; KX_GameObject *other; int face=0, xray=0, poly=0; if (!PyArg_ParseTuple(args,"O|Ofsiii", &pyto, &pyfrom, &dist, &propName, &face, &xray, &poly)) { return NULL; // Python sets a simple error } if (!PyVecTo(pyto, toPoint)) { PyErr_Clear(); if (ConvertPythonToGameObject(pyto, &other, false)) { toPoint = other->NodeGetWorldPosition(); } else { PyErr_SetString(PyExc_TypeError, "the first argument to rayCast must be a vector or a KX_GameObject"); return NULL; } } if (!pyfrom || pyfrom == Py_None) { fromPoint = NodeGetWorldPosition(); } else if (!PyVecTo(pyfrom, fromPoint)) { PyErr_Clear(); if (ConvertPythonToGameObject(pyfrom, &other, false)) { fromPoint = other->NodeGetWorldPosition(); } else { PyErr_SetString(PyExc_TypeError, "the second optional argument to rayCast must be a vector or a KX_GameObject"); return NULL; } } if (dist != 0.0f) { MT_Vector3 toDir = toPoint-fromPoint; if (MT_fuzzyZero(toDir.length2())) { return Py_BuildValue("OOO", Py_None, Py_None, Py_None); } toDir.normalize(); toPoint = fromPoint + (dist) * toDir; } else if (MT_fuzzyZero((toPoint-fromPoint).length2())) { return Py_BuildValue("OOO", Py_None, Py_None, Py_None); } PHY_IPhysicsEnvironment* pe = GetPhysicsEnvironment(); KX_IPhysicsController *spc = GetPhysicsController(); KX_GameObject *parent = GetParent(); if (!spc && parent) spc = parent->GetPhysicsController(); if (parent) parent->Release(); m_pHitObject = NULL; if (propName) m_testPropName = propName; else m_testPropName.SetLength(0); m_xray = xray; // to get the hit results KX_RayCast::Callback callback(this,spc,NULL,face); KX_RayCast::RayTest(pe, fromPoint, toPoint, callback); if (m_pHitObject) { PyObject* returnValue = (poly) ? PyTuple_New(4) : PyTuple_New(3); if (returnValue) { // unlikely this would ever fail, if it does python sets an error PyTuple_SET_ITEM(returnValue, 0, m_pHitObject->AddRef()); PyTuple_SET_ITEM(returnValue, 1, PyObjectFrom(callback.m_hitPoint)); PyTuple_SET_ITEM(returnValue, 2, PyObjectFrom(callback.m_hitNormal)); if (poly) { if (callback.m_hitMesh) { // if this field is set, then we can trust that m_hitPolygon is a valid polygon RAS_Polygon* poly = callback.m_hitMesh->GetPolygon(callback.m_hitPolygon); KX_PolyProxy* polyproxy = new KX_PolyProxy(callback.m_hitMesh, poly); PyTuple_SET_ITEM(returnValue, 3, polyproxy); } else { Py_INCREF(Py_None); PyTuple_SET_ITEM(returnValue, 3, Py_None); } } } return returnValue; } // no hit if (poly) return Py_BuildValue("OOOO", Py_None, Py_None, Py_None, Py_None); else return Py_BuildValue("OOO", Py_None, Py_None, Py_None); } /* --------------------------------------------------------------------- * Some stuff taken from the header * --------------------------------------------------------------------- */ void KX_GameObject::Relink(GEN_Map *map_parameter) { // we will relink the sensors and actuators that use object references // if the object is part of the replicated hierarchy, use the new // object reference instead SCA_SensorList& sensorlist = GetSensors(); SCA_SensorList::iterator sit; for (sit=sensorlist.begin(); sit != sensorlist.end(); sit++) { (*sit)->Relink(map_parameter); } SCA_ActuatorList& actuatorlist = GetActuators(); SCA_ActuatorList::iterator ait; for (ait=actuatorlist.begin(); ait != actuatorlist.end(); ait++) { (*ait)->Relink(map_parameter); } } bool ConvertPythonToGameObject(PyObject * value, KX_GameObject **object, bool py_none_ok) { if (value==NULL) { PyErr_SetString(PyExc_TypeError, "Error in ConvertPythonToGameObject, python pointer NULL, should never happen"); *object = NULL; return false; } if (value==Py_None) { *object = NULL; if (py_none_ok) { return true; } else { PyErr_SetString(PyExc_TypeError, "Expected KX_GameObject or a string for a name of a KX_GameObject, None is invalid"); return false; } return (py_none_ok ? true : false); } if (PyString_Check(value)) { *object = (KX_GameObject *)SCA_ILogicBrick::m_sCurrentLogicManager->GetGameObjectByName(STR_String( PyString_AsString(value) )); if (*object) { return true; } else { PyErr_SetString(PyExc_ValueError, "Requested name did not match any KX_GameObject"); return false; } } if (PyObject_TypeCheck(value, &KX_GameObject::Type)) { *object = static_cast(value); return true; } *object = NULL; if (py_none_ok) { PyErr_SetString(PyExc_TypeError, "Expect a KX_GameObject, a string or None"); } else { PyErr_SetString(PyExc_TypeError, "Expect a KX_GameObject or a string"); } return false; }