# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # import bpy from rigify import RigifyError from rigify_utils import copy_bone_simple, get_side_name from rna_prop_ui import rna_idprop_ui_prop_get METARIG_NAMES = "finger_01", "finger_02", "finger_03" def metarig_template(): # generated by rigify.write_meta_rig bpy.ops.object.mode_set(mode='EDIT') obj = bpy.context.active_object arm = obj.data bone = arm.edit_bones.new('finger.01') bone.head[:] = 0.0000, 0.0000, 0.0000 bone.tail[:] = 0.0353, -0.0184, -0.0053 bone.roll = -2.8722 bone.connected = False bone = arm.edit_bones.new('finger.02') bone.head[:] = 0.0353, -0.0184, -0.0053 bone.tail[:] = 0.0702, -0.0364, -0.0146 bone.roll = -2.7099 bone.connected = True bone.parent = arm.edit_bones['finger.01'] bone = arm.edit_bones.new('finger.03') bone.head[:] = 0.0702, -0.0364, -0.0146 bone.tail[:] = 0.0903, -0.0461, -0.0298 bone.roll = -2.1709 bone.connected = True bone.parent = arm.edit_bones['finger.02'] bpy.ops.object.mode_set(mode='OBJECT') pbone = obj.pose.bones['finger.01'] pbone['type'] = 'finger_curl' def metarig_definition(obj, orig_bone_name): ''' The bone given is the first in a chain Expects a chain of at least 2 children. eg. finger -> finger_01 -> finger_02 ''' bone_definition = [] orig_bone = obj.data.bones[orig_bone_name] bone_definition.append(orig_bone.name) bone = orig_bone chain = 0 while chain < 2: # first 2 bones only have 1 child children = bone.children if len(children) != 1: raise RigifyError("expected the chain to have 2 children from bone '%s' without a fork" % orig_bone_name) bone = children[0] bone_definition.append(bone.name) # finger_02, finger_03 chain += 1 if len(bone_definition) != len(METARIG_NAMES): raise RigifyError("internal problem, expected %d bones" % len(METARIG_NAMES)) return bone_definition def deform(obj, definitions, base_names, options): """ Creates the deform rig. """ bpy.ops.object.mode_set(mode='EDIT') # Create base digit bones: two bones, each half of the base digit. f1a = copy_bone_simple(obj.data, definitions[0], "DEF-%s.01" % base_names[definitions[0]], parent=True) f1b = copy_bone_simple(obj.data, definitions[0], "DEF-%s.02" % base_names[definitions[0]], parent=True) f1a.connected = False f1b.connected = False f1b.parent = f1a center = f1a.center f1a.tail = center f1b.head = center # Create the other deform bones. f2 = copy_bone_simple(obj.data, definitions[1], "DEF-%s" % base_names[definitions[1]], parent=True) f3 = copy_bone_simple(obj.data, definitions[2], "DEF-%s" % base_names[definitions[2]], parent=True) # Store names before leaving edit mode f1a_name = f1a.name f1b_name = f1b.name f2_name = f2.name f3_name = f3.name # Leave edit mode bpy.ops.object.mode_set(mode='OBJECT') # Get the pose bones f1a = obj.pose.bones[f1a_name] f1b = obj.pose.bones[f1b_name] f2 = obj.pose.bones[f2_name] f3 = obj.pose.bones[f3_name] # Constrain the base digit's bones con = f1a.constraints.new('DAMPED_TRACK') con.name = "trackto" con.target = obj con.subtarget = definitions[1] con = f1a.constraints.new('COPY_SCALE') con.name = "copy_scale" con.target = obj con.subtarget = definitions[0] con = f1b.constraints.new('COPY_ROTATION') con.name = "copy_rot" con.target = obj con.subtarget = definitions[0] # Constrain the other digit's bones con = f2.constraints.new('COPY_TRANSFORMS') con.name = "copy_transforms" con.target = obj con.subtarget = definitions[1] con = f3.constraints.new('COPY_TRANSFORMS') con.name = "copy_transforms" con.target = obj con.subtarget = definitions[2] def main(obj, bone_definition, base_names, options): # *** EDITMODE bpy.ops.object.mode_set(mode='EDIT') # get assosiated data arm = obj.data bb = obj.data.bones eb = obj.data.edit_bones pb = obj.pose.bones org_f1 = bone_definition[0] # Original finger bone 01 org_f2 = bone_definition[1] # Original finger bone 02 org_f3 = bone_definition[2] # Original finger bone 03 # Check options if "bend_ratio" in options: bend_ratio = options["bend_ratio"] else: bend_ratio = 0.4 yes = [1, 1.0, True, "True", "true", "Yes", "yes"] make_hinge = False if ("hinge" in options) and (eb[org_f1].parent is not None): if options["hinge"] in yes: make_hinge = True # Needed if its a new armature with no keys obj.animation_data_create() # Create the control bone base_name = base_names[bone_definition[0]].split(".", 1)[0] tot_len = eb[org_f1].length + eb[org_f2].length + eb[org_f3].length control = copy_bone_simple(arm, bone_definition[0], base_name + get_side_name(base_names[bone_definition[0]]), parent=True).name eb[control].connected = eb[org_f1].connected eb[control].parent = eb[org_f1].parent eb[control].length = tot_len # Create secondary control bones f1 = copy_bone_simple(arm, bone_definition[0], base_names[bone_definition[0]]).name f2 = copy_bone_simple(arm, bone_definition[1], base_names[bone_definition[1]]).name f3 = copy_bone_simple(arm, bone_definition[2], base_names[bone_definition[2]]).name # Create driver bones df1 = copy_bone_simple(arm, bone_definition[0], "MCH-" + base_names[bone_definition[0]]).name eb[df1].length /= 2 df2 = copy_bone_simple(arm, bone_definition[1], "MCH-" + base_names[bone_definition[1]]).name eb[df2].length /= 2 df3 = copy_bone_simple(arm, bone_definition[2], "MCH-" + base_names[bone_definition[2]]).name eb[df3].length /= 2 # Set parents of the bones, interleaving the driver bones with the secondary control bones eb[f3].connected = False eb[df3].connected = False eb[f2].connected = False eb[df2].connected = False eb[f1].connected = False eb[df1].connected = eb[org_f1].connected eb[f3].parent = eb[df3] eb[df3].parent = eb[f2] eb[f2].parent = eb[df2] eb[df2].parent = eb[f1] eb[f1].parent = eb[df1] eb[df1].parent = eb[org_f1].parent # Set up bones for hinge if make_hinge: socket = copy_bone_simple(arm, org_f1, "MCH-socket_" + control, parent=True).name hinge = copy_bone_simple(arm, eb[org_f1].parent.name, "MCH-hinge_" + control).name eb[control].connected = False eb[control].parent = eb[hinge] # Create the deform rig while we're still in edit mode deform(obj, bone_definition, base_names, options) # *** POSEMODE bpy.ops.object.mode_set(mode='OBJECT') # Set rotation modes and axis locks pb[control].rotation_mode = obj.pose.bones[bone_definition[0]].rotation_mode pb[control].lock_location = True, True, True pb[control].lock_scale = True, False, True pb[f1].rotation_mode = 'YZX' pb[f2].rotation_mode = 'YZX' pb[f3].rotation_mode = 'YZX' pb[f1].lock_location = True, True, True pb[f2].lock_location = True, True, True pb[f3].lock_location = True, True, True pb[df2].rotation_mode = 'YZX' pb[df3].rotation_mode = 'YZX' # Add the bend_ratio property to the control bone pb[control]["bend_ratio"] = bend_ratio prop = rna_idprop_ui_prop_get(pb[control], "bend_ratio", create=True) prop["soft_min"] = 0.0 prop["soft_max"] = 1.0 # Add hinge property to the control bone if make_hinge: pb[control]["hinge"] = 0.0 prop = rna_idprop_ui_prop_get(pb[control], "hinge", create=True) prop["soft_min"] = 0.0 prop["soft_max"] = 1.0 # Constraints con = pb[df1].constraints.new('COPY_LOCATION') con.target = obj con.subtarget = control con = pb[df1].constraints.new('COPY_ROTATION') con.target = obj con.subtarget = control con = pb[org_f1].constraints.new('COPY_TRANSFORMS') con.target = obj con.subtarget = f1 con = pb[org_f2].constraints.new('COPY_TRANSFORMS') con.target = obj con.subtarget = f2 con = pb[org_f3].constraints.new('COPY_TRANSFORMS') con.target = obj con.subtarget = f3 if make_hinge: con = pb[hinge].constraints.new('COPY_TRANSFORMS') con.target = obj con.subtarget = bb[org_f1].parent.name hinge_driver_path = pb[control].path_to_id() + '["hinge"]' fcurve = con.driver_add("influence", 0) driver = fcurve.driver var = driver.variables.new() driver.type = 'AVERAGE' var.name = "var" var.targets[0].id_type = 'OBJECT' var.targets[0].id = obj var.targets[0].data_path = hinge_driver_path mod = fcurve.modifiers[0] mod.poly_order = 1 mod.coefficients[0] = 1.0 mod.coefficients[1] = -1.0 con = pb[control].constraints.new('COPY_LOCATION') con.target = obj con.subtarget = socket # Create the drivers for the driver bones (control bone scale rotates driver bones) controller_path = pb[control].path_to_id() # 'pose.bones["%s"]' % control_bone_name i = 0 for bone in [df2, df3]: # XXX - todo, any number if i == 2: break pbone = pb[bone] pbone.rotation_mode = 'YZX' fcurve_driver = pbone.driver_add("rotation_euler", 0) #obj.driver_add('pose.bones["%s"].scale', 1) #obj.animation_data.drivers[-1] # XXX, WATCH THIS driver = fcurve_driver.driver # scale target var = driver.variables.new() var.name = "scale" var.targets[0].id_type = 'OBJECT' var.targets[0].id = obj var.targets[0].data_path = controller_path + '.scale[1]' # bend target var = driver.variables.new() var.name = "br" var.targets[0].id_type = 'OBJECT' var.targets[0].id = obj var.targets[0].data_path = controller_path + '["bend_ratio"]' # XXX - todo, any number if i == 0: driver.expression = '(-scale+1.0)*pi*2.0*(1.0-br)' elif i == 1: driver.expression = '(-scale+1.0)*pi*2.0*br' i += 1 # Last step setup layers if "ex_layer" in options: layer = [n == options["ex_layer"] for n in range(0, 32)] else: layer = list(arm.bones[bone_definition[0]].layer) for bone_name in [f1, f2, f3]: arm.bones[bone_name].layer = layer layer = list(arm.bones[bone_definition[0]].layer) bb[control].layer = layer # no blending the result of this return None