/* * -- SuperLU routine (version 2.0) -- * Univ. of California Berkeley, Xerox Palo Alto Research Center, * and Lawrence Berkeley National Lab. * November 15, 1997 * */ #include "ssp_defs.h" #include "colamd.h" extern int genmmd_(int *, int *, int *, int *, int *, int *, int *, int *, int *, int *, int *, int *); static void get_colamd( const int m, /* number of rows in matrix A. */ const int n, /* number of columns in matrix A. */ const int nnz,/* number of nonzeros in matrix A. */ int *colptr, /* column pointer of size n+1 for matrix A. */ int *rowind, /* row indices of size nz for matrix A. */ int *perm_c /* out - the column permutation vector. */ ) { int Alen, *A, i, info, *p; double *knobs; Alen = colamd_recommended(nnz, m, n); if ( !(knobs = (double *) SUPERLU_MALLOC(COLAMD_KNOBS * sizeof(double))) ) ABORT("Malloc fails for knobs"); colamd_set_defaults(knobs); if (!(A = (int *) SUPERLU_MALLOC(Alen * sizeof(int))) ) ABORT("Malloc fails for A[]"); if (!(p = (int *) SUPERLU_MALLOC((n+1) * sizeof(int))) ) ABORT("Malloc fails for p[]"); for (i = 0; i <= n; ++i) p[i] = colptr[i]; for (i = 0; i < nnz; ++i) A[i] = rowind[i]; info = colamd(m, n, Alen, A, p, knobs); if ( info == FALSE ) ABORT("COLAMD failed"); for (i = 0; i < n; ++i) perm_c[p[i]] = i; SUPERLU_FREE(knobs); SUPERLU_FREE(A); SUPERLU_FREE(p); } static void getata( const int m, /* number of rows in matrix A. */ const int n, /* number of columns in matrix A. */ const int nz, /* number of nonzeros in matrix A */ int *colptr, /* column pointer of size n+1 for matrix A. */ int *rowind, /* row indices of size nz for matrix A. */ int *atanz, /* out - on exit, returns the actual number of nonzeros in matrix A'*A. */ int **ata_colptr, /* out - size n+1 */ int **ata_rowind /* out - size *atanz */ ) /* * Purpose * ======= * * Form the structure of A'*A. A is an m-by-n matrix in column oriented * format represented by (colptr, rowind). The output A'*A is in column * oriented format (symmetrically, also row oriented), represented by * (ata_colptr, ata_rowind). * * This routine is modified from GETATA routine by Tim Davis. * The complexity of this algorithm is: SUM_{i=1,m} r(i)^2, * i.e., the sum of the square of the row counts. * * Questions * ========= * o Do I need to withhold the *dense* rows? * o How do I know the number of nonzeros in A'*A? * */ { register int i, j, k, col, num_nz, ti, trow; int *marker, *b_colptr, *b_rowind; int *t_colptr, *t_rowind; /* a column oriented form of T = A' */ if ( !(marker = (int*) SUPERLU_MALLOC((SUPERLU_MAX(m,n)+1)*sizeof(int))) ) ABORT("SUPERLU_MALLOC fails for marker[]"); if ( !(t_colptr = (int*) SUPERLU_MALLOC((m+1) * sizeof(int))) ) ABORT("SUPERLU_MALLOC t_colptr[]"); if ( !(t_rowind = (int*) SUPERLU_MALLOC(nz * sizeof(int))) ) ABORT("SUPERLU_MALLOC fails for t_rowind[]"); /* Get counts of each column of T, and set up column pointers */ for (i = 0; i < m; ++i) marker[i] = 0; for (j = 0; j < n; ++j) { for (i = colptr[j]; i < colptr[j+1]; ++i) ++marker[rowind[i]]; } t_colptr[0] = 0; for (i = 0; i < m; ++i) { t_colptr[i+1] = t_colptr[i] + marker[i]; marker[i] = t_colptr[i]; } /* Transpose the matrix from A to T */ for (j = 0; j < n; ++j) for (i = colptr[j]; i < colptr[j+1]; ++i) { col = rowind[i]; t_rowind[marker[col]] = j; ++marker[col]; } /* ---------------------------------------------------------------- compute B = T * A, where column j of B is: Struct (B_*j) = UNION ( Struct (T_*k) ) A_kj != 0 do not include the diagonal entry ( Partition A as: A = (A_*1, ..., A_*n) Then B = T * A = (T * A_*1, ..., T * A_*n), where T * A_*j = (T_*1, ..., T_*m) * A_*j. ) ---------------------------------------------------------------- */ /* Zero the diagonal flag */ for (i = 0; i < n; ++i) marker[i] = -1; /* First pass determines number of nonzeros in B */ num_nz = 0; for (j = 0; j < n; ++j) { /* Flag the diagonal so it's not included in the B matrix */ marker[j] = j; for (i = colptr[j]; i < colptr[j+1]; ++i) { /* A_kj is nonzero, add pattern of column T_*k to B_*j */ k = rowind[i]; for (ti = t_colptr[k]; ti < t_colptr[k+1]; ++ti) { trow = t_rowind[ti]; if ( marker[trow] != j ) { marker[trow] = j; num_nz++; } } } } *atanz = num_nz; /* Allocate storage for A'*A */ if ( !(*ata_colptr = (int*) SUPERLU_MALLOC( (n+1) * sizeof(int)) ) ) ABORT("SUPERLU_MALLOC fails for ata_colptr[]"); if ( *atanz ) { if ( !(*ata_rowind = (int*) SUPERLU_MALLOC( *atanz * sizeof(int)) ) ) ABORT("SUPERLU_MALLOC fails for ata_rowind[]"); } b_colptr = *ata_colptr; /* aliasing */ b_rowind = *ata_rowind; /* Zero the diagonal flag */ for (i = 0; i < n; ++i) marker[i] = -1; /* Compute each column of B, one at a time */ num_nz = 0; for (j = 0; j < n; ++j) { b_colptr[j] = num_nz; /* Flag the diagonal so it's not included in the B matrix */ marker[j] = j; for (i = colptr[j]; i < colptr[j+1]; ++i) { /* A_kj is nonzero, add pattern of column T_*k to B_*j */ k = rowind[i]; for (ti = t_colptr[k]; ti < t_colptr[k+1]; ++ti) { trow = t_rowind[ti]; if ( marker[trow] != j ) { marker[trow] = j; b_rowind[num_nz++] = trow; } } } } b_colptr[n] = num_nz; SUPERLU_FREE(marker); SUPERLU_FREE(t_colptr); SUPERLU_FREE(t_rowind); } static void at_plus_a( const int n, /* number of columns in matrix A. */ const int nz, /* number of nonzeros in matrix A */ int *colptr, /* column pointer of size n+1 for matrix A. */ int *rowind, /* row indices of size nz for matrix A. */ int *bnz, /* out - on exit, returns the actual number of nonzeros in matrix A'*A. */ int **b_colptr, /* out - size n+1 */ int **b_rowind /* out - size *bnz */ ) { /* * Purpose * ======= * * Form the structure of A'+A. A is an n-by-n matrix in column oriented * format represented by (colptr, rowind). The output A'+A is in column * oriented format (symmetrically, also row oriented), represented by * (b_colptr, b_rowind). * */ register int i, j, k, col, num_nz; int *t_colptr, *t_rowind; /* a column oriented form of T = A' */ int *marker; if ( !(marker = (int*) SUPERLU_MALLOC( n * sizeof(int)) ) ) ABORT("SUPERLU_MALLOC fails for marker[]"); if ( !(t_colptr = (int*) SUPERLU_MALLOC( (n+1) * sizeof(int)) ) ) ABORT("SUPERLU_MALLOC fails for t_colptr[]"); if ( !(t_rowind = (int*) SUPERLU_MALLOC( nz * sizeof(int)) ) ) ABORT("SUPERLU_MALLOC fails t_rowind[]"); /* Get counts of each column of T, and set up column pointers */ for (i = 0; i < n; ++i) marker[i] = 0; for (j = 0; j < n; ++j) { for (i = colptr[j]; i < colptr[j+1]; ++i) ++marker[rowind[i]]; } t_colptr[0] = 0; for (i = 0; i < n; ++i) { t_colptr[i+1] = t_colptr[i] + marker[i]; marker[i] = t_colptr[i]; } /* Transpose the matrix from A to T */ for (j = 0; j < n; ++j) for (i = colptr[j]; i < colptr[j+1]; ++i) { col = rowind[i]; t_rowind[marker[col]] = j; ++marker[col]; } /* ---------------------------------------------------------------- compute B = A + T, where column j of B is: Struct (B_*j) = Struct (A_*k) UNION Struct (T_*k) do not include the diagonal entry ---------------------------------------------------------------- */ /* Zero the diagonal flag */ for (i = 0; i < n; ++i) marker[i] = -1; /* First pass determines number of nonzeros in B */ num_nz = 0; for (j = 0; j < n; ++j) { /* Flag the diagonal so it's not included in the B matrix */ marker[j] = j; /* Add pattern of column A_*k to B_*j */ for (i = colptr[j]; i < colptr[j+1]; ++i) { k = rowind[i]; if ( marker[k] != j ) { marker[k] = j; ++num_nz; } } /* Add pattern of column T_*k to B_*j */ for (i = t_colptr[j]; i < t_colptr[j+1]; ++i) { k = t_rowind[i]; if ( marker[k] != j ) { marker[k] = j; ++num_nz; } } } *bnz = num_nz; /* Allocate storage for A+A' */ if ( !(*b_colptr = (int*) SUPERLU_MALLOC( (n+1) * sizeof(int)) ) ) ABORT("SUPERLU_MALLOC fails for b_colptr[]"); if ( *bnz) { if ( !(*b_rowind = (int*) SUPERLU_MALLOC( *bnz * sizeof(int)) ) ) ABORT("SUPERLU_MALLOC fails for b_rowind[]"); } /* Zero the diagonal flag */ for (i = 0; i < n; ++i) marker[i] = -1; /* Compute each column of B, one at a time */ num_nz = 0; for (j = 0; j < n; ++j) { (*b_colptr)[j] = num_nz; /* Flag the diagonal so it's not included in the B matrix */ marker[j] = j; /* Add pattern of column A_*k to B_*j */ for (i = colptr[j]; i < colptr[j+1]; ++i) { k = rowind[i]; if ( marker[k] != j ) { marker[k] = j; (*b_rowind)[num_nz++] = k; } } /* Add pattern of column T_*k to B_*j */ for (i = t_colptr[j]; i < t_colptr[j+1]; ++i) { k = t_rowind[i]; if ( marker[k] != j ) { marker[k] = j; (*b_rowind)[num_nz++] = k; } } } (*b_colptr)[n] = num_nz; SUPERLU_FREE(marker); SUPERLU_FREE(t_colptr); SUPERLU_FREE(t_rowind); } void get_perm_c(int ispec, SuperMatrix *A, int *perm_c) /* * Purpose * ======= * * GET_PERM_C obtains a permutation matrix Pc, by applying the multiple * minimum degree ordering code by Joseph Liu to matrix A'*A or A+A'. * or using approximate minimum degree column ordering by Davis et. al. * The LU factorization of A*Pc tends to have less fill than the LU * factorization of A. * * Arguments * ========= * * ispec (input) int * Specifies the type of column ordering to reduce fill: * = 1: minimum degree on the structure of A^T * A * = 2: minimum degree on the structure of A^T + A * = 3: approximate minimum degree for unsymmetric matrices * If ispec == 0, the natural ordering (i.e., Pc = I) is returned. * * A (input) SuperMatrix* * Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number * of the linear equations is A->nrow. Currently, the type of A * can be: Stype = NC; Dtype = _D; Mtype = GE. In the future, * more general A can be handled. * * perm_c (output) int* * Column permutation vector of size A->ncol, which defines the * permutation matrix Pc; perm_c[i] = j means column i of A is * in position j in A*Pc. * */ { NCformat *Astore = A->Store; int m, n, bnz, *b_colptr, i; int delta, maxint, nofsub, *invp; int *b_rowind, *dhead, *qsize, *llist, *marker; double t, SuperLU_timer_(); /* make gcc happy */ b_rowind=NULL; b_colptr=NULL; m = A->nrow; n = A->ncol; t = SuperLU_timer_(); switch ( ispec ) { case 0: /* Natural ordering */ for (i = 0; i < n; ++i) perm_c[i] = i; #if ( PRNTlevel>=1 ) printf("Use natural column ordering.\n"); #endif return; case 1: /* Minimum degree ordering on A'*A */ getata(m, n, Astore->nnz, Astore->colptr, Astore->rowind, &bnz, &b_colptr, &b_rowind); #if ( PRNTlevel>=1 ) printf("Use minimum degree ordering on A'*A.\n"); #endif t = SuperLU_timer_() - t; /*printf("Form A'*A time = %8.3f\n", t);*/ break; case 2: /* Minimum degree ordering on A'+A */ if ( m != n ) ABORT("Matrix is not square"); at_plus_a(n, Astore->nnz, Astore->colptr, Astore->rowind, &bnz, &b_colptr, &b_rowind); #if ( PRNTlevel>=1 ) printf("Use minimum degree ordering on A'+A.\n"); #endif t = SuperLU_timer_() - t; /*printf("Form A'+A time = %8.3f\n", t);*/ break; case 3: /* Approximate minimum degree column ordering. */ get_colamd(m, n, Astore->nnz, Astore->colptr, Astore->rowind, perm_c); #if ( PRNTlevel>=1 ) printf(".. Use approximate minimum degree column ordering.\n"); #endif return; default: ABORT("Invalid ISPEC"); return; } if ( bnz != 0 ) { t = SuperLU_timer_(); /* Initialize and allocate storage for GENMMD. */ delta = 1; /* DELTA is a parameter to allow the choice of nodes whose degree <= min-degree + DELTA. */ maxint = 2147483647; /* 2**31 - 1 */ invp = (int *) SUPERLU_MALLOC((n+delta)*sizeof(int)); if ( !invp ) ABORT("SUPERLU_MALLOC fails for invp."); dhead = (int *) SUPERLU_MALLOC((n+delta)*sizeof(int)); if ( !dhead ) ABORT("SUPERLU_MALLOC fails for dhead."); qsize = (int *) SUPERLU_MALLOC((n+delta)*sizeof(int)); if ( !qsize ) ABORT("SUPERLU_MALLOC fails for qsize."); llist = (int *) SUPERLU_MALLOC(n*sizeof(int)); if ( !llist ) ABORT("SUPERLU_MALLOC fails for llist."); marker = (int *) SUPERLU_MALLOC(n*sizeof(int)); if ( !marker ) ABORT("SUPERLU_MALLOC fails for marker."); /* Transform adjacency list into 1-based indexing required by GENMMD.*/ for (i = 0; i <= n; ++i) ++b_colptr[i]; for (i = 0; i < bnz; ++i) ++b_rowind[i]; genmmd_(&n, b_colptr, b_rowind, perm_c, invp, &delta, dhead, qsize, llist, marker, &maxint, &nofsub); /* Transform perm_c into 0-based indexing. */ for (i = 0; i < n; ++i) --perm_c[i]; SUPERLU_FREE(b_colptr); SUPERLU_FREE(b_rowind); SUPERLU_FREE(invp); SUPERLU_FREE(dhead); SUPERLU_FREE(qsize); SUPERLU_FREE(llist); SUPERLU_FREE(marker); t = SuperLU_timer_() - t; /* printf("call GENMMD time = %8.3f\n", t);*/ } else { /* Empty adjacency structure */ for (i = 0; i < n; ++i) perm_c[i] = i; } }