/* * Copyright 2011-2013 Blender Foundation * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License */ #ifndef __UTIL_SIMD_H__ #define __UTIL_SIMD_H__ CCL_NAMESPACE_BEGIN #ifdef __KERNEL_SSE2__ /* SSE shuffle utility functions */ #ifdef __KERNEL_SSSE3__ /* faster version for SSSE3 */ typedef __m128i shuffle_swap_t; ccl_device_inline const shuffle_swap_t shuffle_swap_identity(void) { return _mm_set_epi8(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); } ccl_device_inline const shuffle_swap_t shuffle_swap_swap(void) { return _mm_set_epi8(7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8); } ccl_device_inline const __m128 shuffle_swap(const __m128& a, const shuffle_swap_t& shuf) { return _mm_castsi128_ps(_mm_shuffle_epi8(_mm_castps_si128(a), shuf)); } #else /* somewhat slower version for SSE2 */ typedef int shuffle_swap_t; ccl_device_inline const shuffle_swap_t shuffle_swap_identity(void) { return 0; } ccl_device_inline const shuffle_swap_t shuffle_swap_swap(void) { return 1; } ccl_device_inline const __m128 shuffle_swap(const __m128& a, shuffle_swap_t shuf) { /* shuffle value must be a constant, so we need to branch */ if(shuf) return _mm_shuffle_ps(a, a, _MM_SHUFFLE(1, 0, 3, 2)); else return _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 2, 1, 0)); } #endif #ifdef __KERNEL_SSE41__ ccl_device_inline void gen_idirsplat_swap(const __m128 &pn, const shuffle_swap_t &shuf_identity, const shuffle_swap_t &shuf_swap, const float3& idir, __m128 idirsplat[3], shuffle_swap_t shufflexyz[3]) { const __m128 idirsplat_raw[] = { _mm_set_ps1(idir.x), _mm_set_ps1(idir.y), _mm_set_ps1(idir.z) }; idirsplat[0] = _mm_xor_ps(idirsplat_raw[0], pn); idirsplat[1] = _mm_xor_ps(idirsplat_raw[1], pn); idirsplat[2] = _mm_xor_ps(idirsplat_raw[2], pn); const __m128 signmask = _mm_castsi128_ps(_mm_set1_epi32(0x80000000)); const __m128 shuf_identity_f = _mm_castsi128_ps(shuf_identity); const __m128 shuf_swap_f = _mm_castsi128_ps(shuf_swap); shufflexyz[0] = _mm_castps_si128(_mm_blendv_ps(shuf_identity_f, shuf_swap_f, _mm_and_ps(idirsplat_raw[0], signmask))); shufflexyz[1] = _mm_castps_si128(_mm_blendv_ps(shuf_identity_f, shuf_swap_f, _mm_and_ps(idirsplat_raw[1], signmask))); shufflexyz[2] = _mm_castps_si128(_mm_blendv_ps(shuf_identity_f, shuf_swap_f, _mm_and_ps(idirsplat_raw[2], signmask))); } #else ccl_device_inline void gen_idirsplat_swap(const __m128 &pn, const shuffle_swap_t &shuf_identity, const shuffle_swap_t &shuf_swap, const float3& idir, __m128 idirsplat[3], shuffle_swap_t shufflexyz[3]) { idirsplat[0] = _mm_xor_ps(_mm_set_ps1(idir.x), pn); idirsplat[1] = _mm_xor_ps(_mm_set_ps1(idir.y), pn); idirsplat[2] = _mm_xor_ps(_mm_set_ps1(idir.z), pn); shufflexyz[0] = (idir.x >= 0)? shuf_identity: shuf_swap; shufflexyz[1] = (idir.y >= 0)? shuf_identity: shuf_swap; shufflexyz[2] = (idir.z >= 0)? shuf_identity: shuf_swap; } #endif template ccl_device_inline const __m128 shuffle(const __m128& a, const __m128& b) { return _mm_shuffle_ps(a, b, _MM_SHUFFLE(i3, i2, i1, i0)); } template ccl_device_inline const __m128 shuffle(const __m128& a) { return _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(a), _MM_SHUFFLE(i3, i2, i1, i0))); } template<> __forceinline const __m128 shuffle<0, 1, 0, 1>(const __m128& a) { return _mm_movelh_ps(a, a); } template<> __forceinline const __m128 shuffle<2, 3, 2, 3>(const __m128& a) { return _mm_movehl_ps(a, a); } template ccl_device_inline const __m128i shuffle(const __m128i& a) { return _mm_shuffle_epi32(a, _MM_SHUFFLE(i3, i2, i1, i0)); } template ccl_device_inline const __m128i shuffle(const __m128i& a, const __m128i& b) { return _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), _MM_SHUFFLE(i3, i2, i1, i0))); } /* Blend 2 vectors based on mask: (a[i] & mask[i]) | (b[i] & ~mask[i]) */ #ifdef __KERNEL_SSE41__ ccl_device_inline const __m128 blend(const __m128& mask, const __m128& a, const __m128& b) { return _mm_blendv_ps(b, a, mask); } #else ccl_device_inline const __m128 blend(const __m128& mask, const __m128& a, const __m128& b) { return _mm_or_ps(_mm_and_ps(mask, a), _mm_andnot_ps(mask, b)); } #endif /* calculate a*b+c (replacement for fused multiply-add on SSE CPUs) */ ccl_device_inline const __m128 fma(const __m128& a, const __m128& b, const __m128& c) { return _mm_add_ps(_mm_mul_ps(a, b), c); } /* calculate a*b-c (replacement for fused multiply-subtract on SSE CPUs) */ ccl_device_inline const __m128 fms(const __m128& a, const __m128& b, const __m128& c) { return _mm_sub_ps(_mm_mul_ps(a, b), c); } /* calculate -a*b+c (replacement for fused negated-multiply-subtract on SSE CPUs) */ ccl_device_inline const __m128 fnma(const __m128& a, const __m128& b, const __m128& c) { return _mm_sub_ps(c, _mm_mul_ps(a, b)); } template ccl_device_inline const __m128 broadcast(const __m128& a) { return _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(a), _MM_SHUFFLE(N, N, N, N))); } template ccl_device_inline const __m128i broadcast(const __m128i& a) { return _mm_shuffle_epi32(a, _MM_SHUFFLE(N, N, N, N)); } ccl_device_inline const __m128 uint32_to_float(const __m128i &in) { __m128i a = _mm_srli_epi32(in, 16); __m128i b = _mm_and_si128(in, _mm_set1_epi32(0x0000ffff)); __m128i c = _mm_or_si128(a, _mm_set1_epi32(0x53000000)); __m128 d = _mm_cvtepi32_ps(b); __m128 e = _mm_sub_ps(_mm_castsi128_ps(c), _mm_castsi128_ps(_mm_set1_epi32(0x53000000))); return _mm_add_ps(e, d); } template ccl_device_inline const __m128 set_sign_bit(const __m128 &a) { return _mm_xor_ps(a, _mm_castsi128_ps(_mm_setr_epi32(S1 << 31, S2 << 31, S3 << 31, S4 << 31))); } #ifdef __KERNEL_WITH_SSE_ALIGN__ ccl_device_inline const __m128 load_m128(const float4 &vec) { return _mm_load_ps(&vec.x); } ccl_device_inline const __m128 load_m128(const float3 &vec) { return _mm_load_ps(&vec.x); } #else ccl_device_inline const __m128 load_m128(const float4 &vec) { return _mm_loadu_ps(&vec.x); } ccl_device_inline const __m128 load_m128(const float3 &vec) { return _mm_loadu_ps(&vec.x); } #endif /* __KERNEL_WITH_SSE_ALIGN__ */ ccl_device_inline const __m128 dot3_splat(const __m128& a, const __m128& b) { #ifdef __KERNEL_SSE41__ return _mm_dp_ps(a, b, 0x7f); #else __m128 t = _mm_mul_ps(a, b); return _mm_set1_ps(((float*)&t)[0] + ((float*)&t)[1] + ((float*)&t)[2]); #endif } /* squared length taking only specified axes into account */ template ccl_device_inline float len_squared(const __m128& a) { #ifndef __KERNEL_SSE41__ float4& t = (float4 &)a; return (X ? t.x * t.x : 0.0f) + (Y ? t.y * t.y : 0.0f) + (Z ? t.z * t.z : 0.0f) + (W ? t.w * t.w : 0.0f); #else return _mm_cvtss_f32(_mm_dp_ps(a, a, (X << 4) | (Y << 5) | (Z << 6) | (W << 7) | 0xf)); #endif } ccl_device_inline float dot3(const __m128& a, const __m128& b) { #ifdef __KERNEL_SSE41__ return _mm_cvtss_f32(_mm_dp_ps(a, b, 0x7f)); #else __m128 t = _mm_mul_ps(a, b); return ((float*)&t)[0] + ((float*)&t)[1] + ((float*)&t)[2]; #endif } ccl_device_inline const __m128 len3_squared_splat(const __m128& a) { return dot3_splat(a, a); } ccl_device_inline float len3_squared(const __m128& a) { return dot3(a, a); } ccl_device_inline float len3(const __m128& a) { return _mm_cvtss_f32(_mm_sqrt_ss(dot3_splat(a, a))); } /* calculate shuffled cross product, useful when order of components does not matter */ ccl_device_inline const __m128 cross_zxy(const __m128& a, const __m128& b) { return fms(a, shuffle<1, 2, 0, 3>(b), _mm_mul_ps(b, shuffle<1, 2, 0, 3>(a))); } ccl_device_inline const __m128 cross(const __m128& a, const __m128& b) { return shuffle<1, 2, 0, 3>(cross_zxy(a, b)); } #endif /* __KERNEL_SSE2__ */ CCL_NAMESPACE_END #endif /* __UTIL_SIMD_H__ */