/** * $Id$ * * ***** BEGIN GPL/BL DUAL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. The Blender * Foundation also sells licenses for use in proprietary software under * the Blender License. See http://www.blender.org/BL/ for information * about this. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL/BL DUAL LICENSE BLOCK ***** * Game object wrapper */ #ifdef HAVE_CONFIG_H #include #endif #if defined(_WIN64) typedef unsigned __int64 uint_ptr; #else typedef unsigned long uint_ptr; #endif #ifdef WIN32 // This warning tells us about truncation of __long__ stl-generated names. // It can occasionally cause DevStudio to have internal compiler warnings. #pragma warning( disable : 4786 ) #endif #define KX_INERTIA_INFINITE 10000 #include "RAS_IPolygonMaterial.h" #include "KX_BlenderMaterial.h" #include "KX_GameObject.h" #include "RAS_MeshObject.h" #include "KX_MeshProxy.h" #include // printf #include "SG_Controller.h" #include "KX_IPhysicsController.h" #include "SG_Node.h" #include "SG_Controller.h" #include "KX_ClientObjectInfo.h" #include "RAS_BucketManager.h" #include "KX_PyMath.h" // This file defines relationships between parents and children // in the game engine. #include "KX_SG_NodeRelationships.h" KX_GameObject::KX_GameObject( void* sgReplicationInfo, SG_Callbacks callbacks, PyTypeObject* T ) : SCA_IObject(T), m_bDyna(false), m_bSuspendDynamics(false), m_bUseObjectColor(false), m_bVisible(true), m_pPhysicsController1(NULL), m_isDeformable(false) { m_ignore_activity_culling = false; m_pClient_info = new KX_ClientObjectInfo(this, KX_ClientObjectInfo::ACTOR); m_pSGNode = new SG_Node(this,sgReplicationInfo,callbacks); // define the relationship between this node and it's parent. KX_NormalParentRelation * parent_relation = KX_NormalParentRelation::New(); m_pSGNode->SetParentRelation(parent_relation); }; KX_GameObject::~KX_GameObject() { // is this delete somewhere ? //if (m_sumoObj) // delete m_sumoObj; delete m_pClient_info; //if (m_pSGNode) // delete m_pSGNode; } CValue* KX_GameObject:: Calc(VALUE_OPERATOR op, CValue *val) { return NULL; } CValue* KX_GameObject::CalcFinal(VALUE_DATA_TYPE dtype, VALUE_OPERATOR op, CValue *val) { return NULL; } const STR_String & KX_GameObject::GetText() { return m_text; } float KX_GameObject::GetNumber() { return 0; } STR_String KX_GameObject::GetName() { return m_name; } void KX_GameObject::SetName(STR_String name) { m_name = name; }; // Set the name of the value void KX_GameObject::ReplicaSetName(STR_String name) { } KX_IPhysicsController* KX_GameObject::GetPhysicsController() { return m_pPhysicsController1; } KX_GameObject* KX_GameObject::GetParent() { KX_GameObject* result = NULL; SG_Node* node = m_pSGNode; while (node && !result) { node = node->GetSGParent(); if (node) result = (KX_GameObject*)node->GetSGClientObject(); } if (result) result->AddRef(); return result; } void KX_GameObject::ProcessReplica(KX_GameObject* replica) { replica->m_pPhysicsController1 = NULL; replica->m_pSGNode = NULL; replica->m_pClient_info = new KX_ClientObjectInfo(*m_pClient_info); replica->m_pClient_info->m_gameobject = replica; } CValue* KX_GameObject::GetReplica() { KX_GameObject* replica = new KX_GameObject(*this); // this will copy properties and so on... CValue::AddDataToReplica(replica); ProcessReplica(replica); return replica; } void KX_GameObject::ApplyForce(const MT_Vector3& force,bool local) { if (m_pPhysicsController1) m_pPhysicsController1->ApplyForce(force,local); } void KX_GameObject::ApplyTorque(const MT_Vector3& torque,bool local) { if (m_pPhysicsController1) m_pPhysicsController1->ApplyTorque(torque,local); } void KX_GameObject::ApplyMovement(const MT_Vector3& dloc,bool local) { if (m_pPhysicsController1) // (IsDynamic()) { m_pPhysicsController1->RelativeTranslate(dloc,local); } GetSGNode()->RelativeTranslate(dloc,GetSGNode()->GetSGParent(),local); } void KX_GameObject::ApplyRotation(const MT_Vector3& drot,bool local) { MT_Matrix3x3 rotmat(drot); rotmat.transpose(); if (m_pPhysicsController1) // (IsDynamic()) m_pPhysicsController1->RelativeRotate(rotmat,local); // in worldspace GetSGNode()->RelativeRotate(rotmat,local); } /** GetOpenGL Matrix, returns an OpenGL 'compatible' matrix */ double* KX_GameObject::GetOpenGLMatrix() { // todo: optimize and only update if necessary double* fl = m_OpenGL_4x4Matrix.getPointer(); MT_Transform trans; trans.setOrigin(GetSGNode()->GetWorldPosition()); trans.setBasis(GetSGNode()->GetWorldOrientation()); MT_Vector3 scaling = GetSGNode()->GetWorldScaling(); trans.scale(scaling[0], scaling[1], scaling[2]); trans.getValue(fl); return fl; } void KX_GameObject::Bucketize() { double* fl = GetOpenGLMatrix(); for (size_t i=0;iBucketize(fl, this, m_bUseObjectColor, m_objectColor); } void KX_GameObject::RemoveMeshes() { double* fl = GetOpenGLMatrix(); for (size_t i=0;iRemoveFromBuckets(fl, this); //note: meshes can be shared, and are deleted by KX_BlenderSceneConverter m_meshes.clear(); } void KX_GameObject::UpdateNonDynas() { if (m_pPhysicsController1) { m_pPhysicsController1->SetSumoTransform(true); } } void KX_GameObject::UpdateTransform() { if (m_pPhysicsController1) m_pPhysicsController1->SetSumoTransform(false); } void KX_GameObject::UpdateTransformFunc(SG_IObject* node, void* gameobj, void* scene) { ((KX_GameObject*)gameobj)->UpdateTransform(); } void KX_GameObject::SetDebugColor(unsigned int bgra) { for (size_t i=0;iDebugColor(bgra); } void KX_GameObject::ResetDebugColor() { SetDebugColor(0xff000000); } void KX_GameObject::UpdateIPO(float curframetime, bool recurse, bool ipo_as_force, bool force_local) { // The ipo-actuator needs a sumo reference... this is retrieved (unfortunately) // by the iposgcontr itself... // ipocontr->SetSumoReference(gameobj->GetSumoScene(), // gameobj->GetSumoObject()); // The ipo has to be treated as a force, and not a displacement! // For this case, we send some settings to the controller. This // may need some caching... if (ipo_as_force) { SGControllerList::iterator it = GetSGNode()->GetSGControllerList().begin(); while (it != GetSGNode()->GetSGControllerList().end()) { (*it)->SetOption(SG_Controller::SG_CONTR_IPO_IPO_AS_FORCE, ipo_as_force); (*it)->SetOption(SG_Controller::SG_CONTR_IPO_FORCES_ACT_LOCAL, force_local); it++; } } // The rest is the 'normal' update procedure. GetSGNode()->SetSimulatedTime(curframetime,recurse); GetSGNode()->UpdateWorldData(curframetime); UpdateTransform(); } // IPO update void KX_GameObject::UpdateMaterialData( MT_Vector4 rgba, MT_Vector3 specrgb, MT_Scalar hard, MT_Scalar spec, MT_Scalar ref, MT_Scalar emit, MT_Scalar alpha ) { int mesh = 0; if (((unsigned int)mesh < m_meshes.size()) && mesh >= 0) { RAS_MaterialBucket::Set::iterator mit = m_meshes[mesh]->GetFirstMaterial(); for(; mit != m_meshes[mesh]->GetLastMaterial(); ++mit) { RAS_IPolyMaterial* poly = (*mit)->GetPolyMaterial(); if(poly->GetFlag() & RAS_BLENDERMAT ) { SetObjectColor(rgba); KX_BlenderMaterial *m = static_cast(poly); m->UpdateIPO(rgba, specrgb,hard,spec,ref,emit, alpha); } } } } bool KX_GameObject::GetVisible( void ) { return m_bVisible; } void KX_GameObject::SetVisible( bool v ) { m_bVisible = v; } // used by Python, and the actuatorshould _not_ be misused by the // scene! void KX_GameObject::MarkVisible( bool visible ) { /* If explicit visibility settings are used, this is * determined on this level. Maybe change this to mesh level * later on? */ double* fl = GetOpenGLMatrixPtr()->getPointer(); for (size_t i=0;iMarkVisible(fl,this,visible,m_bUseObjectColor,m_objectColor); } } // Always use the flag? void KX_GameObject::MarkVisible( void ) { double* fl = GetOpenGLMatrixPtr()->getPointer(); for (size_t i=0;iMarkVisible(fl, this, m_bVisible, m_bUseObjectColor, m_objectColor ); } } void KX_GameObject::addLinearVelocity(const MT_Vector3& lin_vel,bool local) { if (m_pPhysicsController1) m_pPhysicsController1->SetLinearVelocity(lin_vel + m_pPhysicsController1->GetLinearVelocity(),local); } void KX_GameObject::setLinearVelocity(const MT_Vector3& lin_vel,bool local) { if (m_pPhysicsController1) m_pPhysicsController1->SetLinearVelocity(lin_vel,local); } void KX_GameObject::setAngularVelocity(const MT_Vector3& ang_vel,bool local) { if (m_pPhysicsController1) m_pPhysicsController1->SetAngularVelocity(ang_vel,local); } void KX_GameObject::ResolveCombinedVelocities( const MT_Vector3 & lin_vel, const MT_Vector3 & ang_vel, bool lin_vel_local, bool ang_vel_local ){ if (m_pPhysicsController1) { MT_Vector3 lv = lin_vel_local ? NodeGetWorldOrientation() * lin_vel : lin_vel; MT_Vector3 av = ang_vel_local ? NodeGetWorldOrientation() * ang_vel : ang_vel; m_pPhysicsController1->resolveCombinedVelocities( lv.x(),lv.y(),lv.z(),av.x(),av.y(),av.z()); } } void KX_GameObject::SetObjectColor(const MT_Vector4& rgbavec) { m_bUseObjectColor = true; m_objectColor = rgbavec; } MT_Vector3 KX_GameObject::GetLinearVelocity() { MT_Vector3 velocity(0.0,0.0,0.0); if (m_pPhysicsController1) { velocity = m_pPhysicsController1->GetLinearVelocity(); } return velocity; } // scenegraph node stuff void KX_GameObject::NodeSetLocalPosition(const MT_Point3& trans) { if (m_pPhysicsController1) { m_pPhysicsController1->setPosition(trans); } GetSGNode()->SetLocalPosition(trans); } void KX_GameObject::NodeSetLocalOrientation(const MT_Matrix3x3& rot) { if (m_pPhysicsController1) { m_pPhysicsController1->setOrientation(rot.getRotation()); } GetSGNode()->SetLocalOrientation(rot); } void KX_GameObject::NodeSetLocalScale(const MT_Vector3& scale) { if (m_pPhysicsController1) { m_pPhysicsController1->setScaling(scale); } GetSGNode()->SetLocalScale(scale); } void KX_GameObject::NodeSetRelativeScale(const MT_Vector3& scale) { GetSGNode()->RelativeScale(scale); } void KX_GameObject::NodeUpdateGS(double time,bool bInitiator) { GetSGNode()->UpdateWorldData(time); } const MT_Matrix3x3& KX_GameObject::NodeGetWorldOrientation() const { return GetSGNode()->GetWorldOrientation(); } const MT_Vector3& KX_GameObject::NodeGetWorldScaling() const { return GetSGNode()->GetWorldScaling(); } const MT_Point3& KX_GameObject::NodeGetWorldPosition() const { return GetSGNode()->GetWorldPosition(); } /* Suspend/ resume: for the dynamic behaviour, there is a simple * method. For the residual motion, there is not. I wonder what the * correct solution is for Sumo. Remove from the motion-update tree? * * So far, only switch the physics and logic. * */ void KX_GameObject::Resume(void) { if (m_suspended) { SCA_IObject::Resume(); GetPhysicsController()->RestoreDynamics(); m_suspended = false; } } void KX_GameObject::Suspend(void) { if ((!m_ignore_activity_culling) && (!m_suspended)) { SCA_IObject::Suspend(); GetPhysicsController()->SuspendDynamics(); m_suspended = true; } } /* ------- python stuff ---------------------------------------------------*/ PyMethodDef KX_GameObject::Methods[] = { {"setVisible",(PyCFunction) KX_GameObject::sPySetVisible, METH_VARARGS}, {"setPosition", (PyCFunction) KX_GameObject::sPySetPosition, METH_VARARGS}, {"getPosition", (PyCFunction) KX_GameObject::sPyGetPosition, METH_VARARGS}, {"getOrientation", (PyCFunction) KX_GameObject::sPyGetOrientation, METH_VARARGS}, {"setOrientation", (PyCFunction) KX_GameObject::sPySetOrientation, METH_VARARGS}, {"getLinearVelocity", (PyCFunction) KX_GameObject::sPyGetLinearVelocity, METH_VARARGS}, {"getVelocity", (PyCFunction) KX_GameObject::sPyGetVelocity, METH_VARARGS}, {"getMass", (PyCFunction) KX_GameObject::sPyGetMass, METH_VARARGS}, {"getReactionForce", (PyCFunction) KX_GameObject::sPyGetReactionForce, METH_VARARGS}, {"applyImpulse", (PyCFunction) KX_GameObject::sPyApplyImpulse, METH_VARARGS}, {"setCollisionMargin", (PyCFunction) KX_GameObject::sPySetCollisionMargin, METH_VARARGS}, {"suspendDynamics", (PyCFunction)KX_GameObject::sPySuspendDynamics,METH_VARARGS}, {"restoreDynamics", (PyCFunction)KX_GameObject::sPyRestoreDynamics,METH_VARARGS}, {"enableRigidBody", (PyCFunction)KX_GameObject::sPyEnableRigidBody,METH_VARARGS}, {"disableRigidBody", (PyCFunction)KX_GameObject::sPyDisableRigidBody,METH_VARARGS}, {"getParent", (PyCFunction)KX_GameObject::sPyGetParent,METH_VARARGS}, {"getMesh", (PyCFunction)KX_GameObject::sPyGetMesh,METH_VARARGS}, {"getPhysicsId", (PyCFunction)KX_GameObject::sPyGetPhysicsId,METH_VARARGS}, KX_PYMETHODTABLE(KX_GameObject, getDistanceTo), {NULL,NULL} //Sentinel }; /* bool KX_GameObject::ConvertPythonVectorArgs(PyObject* args, MT_Vector3& pos, MT_Vector3& pos2) { PyObject* pylist; PyObject* pylist2; bool error = (PyArg_ParseTuple(args,"OO",&pylist,&pylist2)) != 0; pos = ConvertPythonPylist(pylist); pos2 = ConvertPythonPylist(pylist2); return error; } */ PyObject* KX_GameObject::sPySetPosition(PyObject* self, PyObject* args, PyObject* kwds) { return ((KX_GameObject*) self)->PySetPosition(self, args, kwds); } PyObject* KX_GameObject::PyGetPosition(PyObject* self, PyObject* args, PyObject* kwds) { return PyObjectFrom(NodeGetWorldPosition()); } PyTypeObject KX_GameObject::Type = { PyObject_HEAD_INIT(&PyType_Type) 0, "KX_GameObject", sizeof(KX_GameObject), 0, PyDestructor, 0, __getattr, __setattr, 0, //&MyPyCompare, __repr, 0, //&cvalue_as_number, 0, 0, 0, 0 }; PyParentObject KX_GameObject::Parents[] = { &KX_GameObject::Type, &SCA_IObject::Type, &CValue::Type, NULL }; PyObject* KX_GameObject::_getattr(const STR_String& attr) { if (m_pPhysicsController1) { if (attr == "mass") return PyFloat_FromDouble(GetPhysicsController()->GetMass()); } if (attr == "parent") { KX_GameObject* parent = GetParent(); if (parent) { parent->AddRef(); return parent; } Py_Return; } if (attr == "visible") return PyInt_FromLong(m_bVisible); if (attr == "position") return PyObjectFrom(NodeGetWorldPosition()); if (attr == "orientation") return PyObjectFrom(NodeGetWorldOrientation()); if (attr == "scaling") return PyObjectFrom(NodeGetWorldScaling()); if (attr == "name") return PyString_FromString(m_name.ReadPtr()); _getattr_up(SCA_IObject); } int KX_GameObject::_setattr(const STR_String& attr, PyObject *value) // _setattr method { if (attr == "mass") return 1; if (attr == "parent") return 1; if (PyInt_Check(value)) { int val = PyInt_AsLong(value); if (attr == "visible") { SetVisible(val != 0); return 0; } } if (PySequence_Check(value)) { if (attr == "orientation") { MT_Matrix3x3 rot; if (PyObject_IsMT_Matrix(value, 3)) { if (PyMatTo(value, rot)) { NodeSetLocalOrientation(rot); return 0; } return 1; } if (PySequence_Size(value) == 4) { MT_Quaternion qrot; if (PyVecTo(value, qrot)) { rot.setRotation(qrot); NodeSetLocalOrientation(rot); return 0; } return 1; } if (PySequence_Size(value) == 3) { MT_Vector3 erot; if (PyVecTo(value, erot)) { rot.setEuler(erot); NodeSetLocalOrientation(rot); return 0; } return 1; } return 1; } if (attr == "position") { MT_Point3 pos; if (PyVecTo(value, pos)) { NodeSetLocalPosition(pos); return 0; } return 1; } if (attr == "scaling") { MT_Vector3 scale; if (PyVecTo(value, scale)) { NodeSetLocalScale(scale); return 0; } return 1; } } if (PyString_Check(value)) { if (attr == "name") { m_name = PyString_AsString(value); return 0; } } return SCA_IObject::_setattr(attr, value); } PyObject* KX_GameObject::PyGetLinearVelocity(PyObject* self, PyObject* args, PyObject* kwds) { // only can get the velocity if we have a physics object connected to us... return PyObjectFrom(GetLinearVelocity()); } PyObject* KX_GameObject::PySetVisible(PyObject* self, PyObject* args, PyObject* kwds) { int visible = 1; if (PyArg_ParseTuple(args,"i",&visible)) { MarkVisible(visible!=0); m_bVisible = (visible!=0); } else { return NULL; } Py_Return; } PyObject* KX_GameObject::PyGetVelocity(PyObject* self, PyObject* args, PyObject* kwds) { // only can get the velocity if we have a physics object connected to us... MT_Vector3 velocity(0.0,0.0,0.0); MT_Point3 point(0.0,0.0,0.0); PyObject* pypos = NULL; if (PyArg_ParseTuple(args, "|O", &pypos)) { if (pypos) PyVecTo(pypos, point); } if (m_pPhysicsController1) { velocity = m_pPhysicsController1->GetVelocity(point); } return PyObjectFrom(velocity); } PyObject* KX_GameObject::PyGetMass(PyObject* self, PyObject* args, PyObject* kwds) { PyObject* pymass = NULL; float mass = GetPhysicsController()->GetMass(); pymass = PyFloat_FromDouble(mass); if (pymass) return pymass; Py_Return; } PyObject* KX_GameObject::PyGetReactionForce(PyObject* self, PyObject* args, PyObject* kwds) { // only can get the velocity if we have a physics object connected to us... return PyObjectFrom(GetPhysicsController()->getReactionForce()); } PyObject* KX_GameObject::PyEnableRigidBody(PyObject* self, PyObject* args, PyObject* kwds) { GetPhysicsController()->setRigidBody(true); Py_Return; } PyObject* KX_GameObject::PyDisableRigidBody(PyObject* self, PyObject* args, PyObject* kwds) { GetPhysicsController()->setRigidBody(false); Py_Return; } PyObject* KX_GameObject::PyGetParent(PyObject* self, PyObject* args, PyObject* kwds) { KX_GameObject* parent = this->GetParent(); if (parent) { parent->AddRef(); return parent; } Py_Return; } PyObject* KX_GameObject::PyGetMesh(PyObject* self, PyObject* args, PyObject* kwds) { int mesh = 0; if (PyArg_ParseTuple(args, "|i", &mesh)) { if (((unsigned int)mesh < m_meshes.size()) && mesh >= 0) { KX_MeshProxy* meshproxy = new KX_MeshProxy(m_meshes[mesh]); return meshproxy; } } Py_Return; } PyObject* KX_GameObject::PySetCollisionMargin(PyObject* self, PyObject* args, PyObject* kwds) { float collisionMargin; if (PyArg_ParseTuple(args, "f", &collisionMargin)) { if (m_pPhysicsController1) { m_pPhysicsController1->SetMargin(collisionMargin); Py_Return; } } return NULL; } PyObject* KX_GameObject::PyApplyImpulse(PyObject* self, PyObject* args, PyObject* kwds) { PyObject* pyattach; PyObject* pyimpulse; if (PyArg_ParseTuple(args, "OO", &pyattach, &pyimpulse)) { MT_Point3 attach; MT_Vector3 impulse; if (m_pPhysicsController1) { if (PyVecTo(pyattach, attach) && PyVecTo(pyimpulse, impulse)) { m_pPhysicsController1->applyImpulse(attach, impulse); Py_Return; } } } return NULL; } PyObject* KX_GameObject::PySuspendDynamics(PyObject* self, PyObject* args, PyObject* kwds) { if (m_bSuspendDynamics) { Py_Return; } if (m_pPhysicsController1) { m_pPhysicsController1->SuspendDynamics(); } m_bSuspendDynamics = true; Py_Return; } PyObject* KX_GameObject::PyRestoreDynamics(PyObject* self, PyObject* args, PyObject* kwds) { if (!m_bSuspendDynamics) { Py_Return; } if (m_pPhysicsController1) { m_pPhysicsController1->RestoreDynamics(); } m_bSuspendDynamics = false; Py_Return; } PyObject* KX_GameObject::PyGetOrientation(PyObject* self, PyObject* args, PyObject* kwds) //keywords { return PyObjectFrom(NodeGetWorldOrientation()); } PyObject* KX_GameObject::PySetOrientation(PyObject* self, PyObject* args, PyObject* kwds) { PyObject* pylist; if (PyArg_ParseTuple(args,"O",&pylist)) { MT_Matrix3x3 matrix; if (PyObject_IsMT_Matrix(pylist, 3) && PyMatTo(pylist, matrix)) { NodeSetLocalOrientation(matrix); Py_Return; } MT_Quaternion quat; if (PyVecTo(pylist, quat)) { matrix.setRotation(quat); NodeSetLocalOrientation(matrix); Py_Return; } } return NULL; } PyObject* KX_GameObject::PySetPosition(PyObject* self, PyObject* args, PyObject* kwds) { MT_Point3 pos; if (PyVecArgTo(args, pos)) { NodeSetLocalPosition(pos); NodeUpdateGS(0.f,true); Py_Return; } return NULL; } PyObject* KX_GameObject::PyGetPhysicsId(PyObject* self, PyObject* args, PyObject* kwds) { KX_IPhysicsController* ctrl = GetPhysicsController(); uint_ptr physid=0; if (ctrl) { physid= (uint_ptr)ctrl->GetUserData(); } return PyInt_FromLong((long)physid); } KX_PYMETHODDEF_DOC(KX_GameObject, getDistanceTo, "getDistanceTo(other): get distance to another point/KX_GameObject") { MT_Point3 b; if (PyVecArgTo(args, b)) { return PyFloat_FromDouble(NodeGetWorldPosition().distance(b)); } PyErr_Clear(); PyObject *pyother; if (PyArg_ParseTuple(args, "O!", &KX_GameObject::Type, &pyother)) { KX_GameObject *other = static_cast(pyother); return PyFloat_FromDouble(NodeGetWorldPosition().distance(other->NodeGetWorldPosition())); } return NULL; } /* --------------------------------------------------------------------- * Some stuff taken from the header * --------------------------------------------------------------------- */ void KX_GameObject::Relink(GEN_Map *map_parameter) { /* intentionally empty ? */ }