/* * Adapted from code Copyright 2009-2010 NVIDIA Corporation * Modifications Copyright 2011, Blender Foundation. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ CCL_NAMESPACE_BEGIN /* * "Persistent while-while kernel" used in: * * "Understanding the Efficiency of Ray Traversal on GPUs", * Timo Aila and Samuli Laine, * Proc. High-Performance Graphics 2009 */ /* bottom-most stack entry, indicating the end of traversal */ #define ENTRYPOINT_SENTINEL 0x76543210 /* 64 object BVH + 64 mesh BVH + 64 object node splitting */ #define BVH_STACK_SIZE 192 #define BVH_NODE_SIZE 4 #define TRI_NODE_SIZE 3 /* silly workaround for float extended precision that happens when compiling * without sse support on x86, it results in different results for float ops * that you would otherwise expect to compare correctly */ #if !defined(__i386__) || defined(__SSE__) #define NO_EXTENDED_PRECISION #else #define NO_EXTENDED_PRECISION volatile #endif __device_inline float3 bvh_inverse_direction(float3 dir) { /* avoid divide by zero (ooeps = exp2f(-80.0f)) */ float ooeps = 0.00000000000000000000000082718061255302767487140869206996285356581211090087890625f; float3 idir; idir.x = 1.0f/((fabsf(dir.x) > ooeps)? dir.x: copysignf(ooeps, dir.x)); idir.y = 1.0f/((fabsf(dir.y) > ooeps)? dir.y: copysignf(ooeps, dir.y)); idir.z = 1.0f/((fabsf(dir.z) > ooeps)? dir.z: copysignf(ooeps, dir.z)); return idir; } __device_inline void bvh_instance_push(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *idir, float *t, const float tmax) { Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM); *P = transform_point(&tfm, ray->P); float3 dir = transform_direction(&tfm, ray->D); float len; dir = normalize_len(dir, &len); *idir = bvh_inverse_direction(dir); if(*t != FLT_MAX) *t *= len; } __device_inline void bvh_instance_pop(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *idir, float *t, const float tmax) { if(*t != FLT_MAX) { Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM); *t *= len(transform_direction(&tfm, 1.0f/(*idir))); } *P = ray->P; *idir = bvh_inverse_direction(ray->D); } #ifdef __OBJECT_MOTION__ __device_inline void bvh_instance_motion_push(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *idir, float *t, Transform *tfm, const float tmax) { Transform itfm; *tfm = object_fetch_transform_motion_test(kg, object, ray->time, &itfm); *P = transform_point(&itfm, ray->P); float3 dir = transform_direction(&itfm, ray->D); float len; dir = normalize_len(dir, &len); *idir = bvh_inverse_direction(dir); if(*t != FLT_MAX) *t *= len; } __device_inline void bvh_instance_motion_pop(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *idir, float *t, Transform *tfm, const float tmax) { if(*t != FLT_MAX) *t *= len(transform_direction(tfm, 1.0f/(*idir))); *P = ray->P; *idir = bvh_inverse_direction(ray->D); } #endif /* intersect two bounding boxes */ __device_inline void bvh_node_intersect(KernelGlobals *kg, bool *traverseChild0, bool *traverseChild1, bool *closestChild1, int *nodeAddr0, int *nodeAddr1, float3 P, float3 idir, float t, uint visibility, int nodeAddr) { /* fetch node data */ float4 n0xy = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+0); float4 n1xy = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+1); float4 nz = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+2); float4 cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+3); /* intersect ray against child nodes */ float3 ood = P * idir; NO_EXTENDED_PRECISION float c0lox = n0xy.x * idir.x - ood.x; NO_EXTENDED_PRECISION float c0hix = n0xy.y * idir.x - ood.x; NO_EXTENDED_PRECISION float c0loy = n0xy.z * idir.y - ood.y; NO_EXTENDED_PRECISION float c0hiy = n0xy.w * idir.y - ood.y; NO_EXTENDED_PRECISION float c0loz = nz.x * idir.z - ood.z; NO_EXTENDED_PRECISION float c0hiz = nz.y * idir.z - ood.z; NO_EXTENDED_PRECISION float c0min = max4(min(c0lox, c0hix), min(c0loy, c0hiy), min(c0loz, c0hiz), 0.0f); NO_EXTENDED_PRECISION float c0max = min4(max(c0lox, c0hix), max(c0loy, c0hiy), max(c0loz, c0hiz), t); NO_EXTENDED_PRECISION float c1loz = nz.z * idir.z - ood.z; NO_EXTENDED_PRECISION float c1hiz = nz.w * idir.z - ood.z; NO_EXTENDED_PRECISION float c1lox = n1xy.x * idir.x - ood.x; NO_EXTENDED_PRECISION float c1hix = n1xy.y * idir.x - ood.x; NO_EXTENDED_PRECISION float c1loy = n1xy.z * idir.y - ood.y; NO_EXTENDED_PRECISION float c1hiy = n1xy.w * idir.y - ood.y; NO_EXTENDED_PRECISION float c1min = max4(min(c1lox, c1hix), min(c1loy, c1hiy), min(c1loz, c1hiz), 0.0f); NO_EXTENDED_PRECISION float c1max = min4(max(c1lox, c1hix), max(c1loy, c1hiy), max(c1loz, c1hiz), t); /* decide which nodes to traverse next */ #ifdef __VISIBILITY_FLAG__ /* this visibility test gives a 5% performance hit, how to solve? */ *traverseChild0 = (c0max >= c0min) && (__float_as_int(cnodes.z) & visibility); *traverseChild1 = (c1max >= c1min) && (__float_as_int(cnodes.w) & visibility); #else *traverseChild0 = (c0max >= c0min); *traverseChild1 = (c1max >= c1min); #endif *nodeAddr0 = __float_as_int(cnodes.x); *nodeAddr1 = __float_as_int(cnodes.y); *closestChild1 = (c1min < c0min); } /* Sven Woop's algorithm */ __device_inline void bvh_triangle_intersect(KernelGlobals *kg, Intersection *isect, float3 P, float3 idir, uint visibility, int object, int triAddr) { /* compute and check intersection t-value */ float4 v00 = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+0); float4 v11 = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+1); float3 dir = 1.0f/idir; float Oz = v00.w - P.x*v00.x - P.y*v00.y - P.z*v00.z; float invDz = 1.0f/(dir.x*v00.x + dir.y*v00.y + dir.z*v00.z); float t = Oz * invDz; if(t > 0.0f && t < isect->t) { /* compute and check barycentric u */ float Ox = v11.w + P.x*v11.x + P.y*v11.y + P.z*v11.z; float Dx = dir.x*v11.x + dir.y*v11.y + dir.z*v11.z; float u = Ox + t*Dx; if(u >= 0.0f) { /* compute and check barycentric v */ float4 v22 = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+2); float Oy = v22.w + P.x*v22.x + P.y*v22.y + P.z*v22.z; float Dy = dir.x*v22.x + dir.y*v22.y + dir.z*v22.z; float v = Oy + t*Dy; if(v >= 0.0f && u + v <= 1.0f) { #ifdef __VISIBILITY_FLAG__ /* visibility flag test. we do it here under the assumption * that most triangles are culled by node flags */ if(kernel_tex_fetch(__prim_visibility, triAddr) & visibility) #endif { /* record intersection */ isect->prim = triAddr; isect->object = object; isect->u = u; isect->v = v; isect->t = t; } } } } } #ifdef __HAIR__ __device_inline void curvebounds(float *lower, float *upper, float *extremta, float *extrema, float *extremtb, float *extremb, float p0, float p1, float p2, float p3) { float halfdiscroot = (p2 * p2 - 3 * p3 * p1); float ta = -1.0f; float tb = -1.0f; *extremta = -1.0f; *extremtb = -1.0f; *upper = p0; *lower = p0 + p1 + p2 + p3; *extrema = *upper; *extremb = *lower; if(*lower >= *upper) { *upper = *lower; *lower = p0; } if(halfdiscroot >= 0) { halfdiscroot = sqrt(halfdiscroot); ta = (-p2 - halfdiscroot) / (3 * p3); tb = (-p2 + halfdiscroot) / (3 * p3); } float t2; float t3; if(ta > 0.0f && ta < 1.0f) { t2 = ta * ta; t3 = t2 * ta; *extremta = ta; *extrema = p3 * t3 + p2 * t2 + p1 * ta + p0; if(*extrema > *upper) { *upper = *extrema; } if(*extrema < *lower) { *lower = *extrema; } } if(tb > 0.0f && tb < 1.0f) { t2 = tb * tb; t3 = t2 * tb; *extremtb = tb; *extremb = p3 * t3 + p2 * t2 + p1 * tb + p0; if(*extremb >= *upper) { *upper = *extremb; } if(*extremb <= *lower) { *lower = *extremb; } } } __device_inline void bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersection *isect, float3 P, float3 idir, uint visibility, int object, int curveAddr, int segment) { int depth = kernel_data.curve_kernel_data.subdivisions; /* curve Intersection check */ float3 dir = 1.0f/idir; int flags = kernel_data.curve_kernel_data.curveflags; int prim = kernel_tex_fetch(__prim_index, curveAddr); float3 curve_coef[4]; float r_st,r_en; /*obtain curve parameters*/ { /*ray transform created - this shold be created at beginning of intersection loop*/ Transform htfm; float d = sqrtf(dir.x * dir.x + dir.z * dir.z); htfm = make_transform( dir.z / d, 0, -dir.x /d, 0, -dir.x * dir.y /d, d, -dir.y * dir.z /d, 0, dir.x, dir.y, dir.z, 0, 0, 0, 0, 1) * make_transform( 1, 0, 0, -P.x, 0, 1, 0, -P.y, 0, 0, 1, -P.z, 0, 0, 0, 1); float4 v00 = kernel_tex_fetch(__curves, prim); int k0 = __float_as_int(v00.x) + segment; int k1 = k0 + 1; int ka = max(k0 - 1,__float_as_int(v00.x)); int kb = min(k1 + 1,__float_as_int(v00.x) + __float_as_int(v00.y) - 1); float4 P0 = kernel_tex_fetch(__curve_keys, ka); float4 P1 = kernel_tex_fetch(__curve_keys, k0); float4 P2 = kernel_tex_fetch(__curve_keys, k1); float4 P3 = kernel_tex_fetch(__curve_keys, kb); float3 p0 = transform_point(&htfm, float4_to_float3(P0)); float3 p1 = transform_point(&htfm, float4_to_float3(P1)); float3 p2 = transform_point(&htfm, float4_to_float3(P2)); float3 p3 = transform_point(&htfm, float4_to_float3(P3)); float fc = 0.71f; curve_coef[0] = p1; curve_coef[1] = -fc*p0 + fc*p2; curve_coef[2] = 2.0f * fc * p0 + (fc - 3.0f) * p1 + (3.0f - 2.0f * fc) * p2 - fc * p3; curve_coef[3] = -fc * p0 + (2.0f - fc) * p1 + (fc - 2.0f) * p2 + fc * p3; r_st = P1.w; r_en = P2.w; } float r_curr = max(r_st, r_en); /*find bounds - this is slow for cubic curves*/ float upper,lower; float xextrem[4]; curvebounds(&lower, &upper, &xextrem[0], &xextrem[1], &xextrem[2], &xextrem[3], curve_coef[0].x, curve_coef[1].x, curve_coef[2].x, curve_coef[3].x); if(lower > r_curr || upper < -r_curr) return; float yextrem[4]; curvebounds(&lower, &upper, &yextrem[0], &yextrem[1], &yextrem[2], &yextrem[3], curve_coef[0].y, curve_coef[1].y, curve_coef[2].y, curve_coef[3].y); if(lower > r_curr || upper < -r_curr) return; float zextrem[4]; curvebounds(&lower, &upper, &zextrem[0], &zextrem[1], &zextrem[2], &zextrem[3], curve_coef[0].z, curve_coef[1].z, curve_coef[2].z, curve_coef[3].z); if(lower - r_curr > isect->t || upper + r_curr < 0.0f) return; /*setup recurrent loop*/ int level = 1 << depth; int tree = 0; float resol = 1.0f / (float)level; /*begin loop*/ while(!(tree >> (depth))) { float i_st = tree * resol; float i_en = i_st + (level * resol); float3 p_st = ((curve_coef[3] * i_st + curve_coef[2]) * i_st + curve_coef[1]) * i_st + curve_coef[0]; float3 p_en = ((curve_coef[3] * i_en + curve_coef[2]) * i_en + curve_coef[1]) * i_en + curve_coef[0]; float bminx = min(p_st.x, p_en.x); float bmaxx = max(p_st.x, p_en.x); float bminy = min(p_st.y, p_en.y); float bmaxy = max(p_st.y, p_en.y); float bminz = min(p_st.z, p_en.z); float bmaxz = max(p_st.z, p_en.z); if(xextrem[0] >= i_st && xextrem[0] <= i_en) { bminx = min(bminx,xextrem[1]); bmaxx = max(bmaxx,xextrem[1]); } if(xextrem[2] >= i_st && xextrem[2] <= i_en) { bminx = min(bminx,xextrem[3]); bmaxx = max(bmaxx,xextrem[3]); } if(yextrem[0] >= i_st && yextrem[0] <= i_en) { bminy = min(bminy,yextrem[1]); bmaxy = max(bmaxy,yextrem[1]); } if(yextrem[2] >= i_st && yextrem[2] <= i_en) { bminy = min(bminy,yextrem[3]); bmaxy = max(bmaxy,yextrem[3]); } if(zextrem[0] >= i_st && zextrem[0] <= i_en) { bminz = min(bminz,zextrem[1]); bmaxz = max(bmaxz,zextrem[1]); } if(zextrem[2] >= i_st && zextrem[2] <= i_en) { bminz = min(bminz,zextrem[3]); bmaxz = max(bmaxz,zextrem[3]); } float r1 = r_st + (r_en - r_st) * i_st; float r2 = r_st + (r_en - r_st) * i_en; r_curr = max(r1, r2); if (bminz - r_curr > isect->t || bmaxz + r_curr < 0.0f|| bminx > r_curr || bmaxx < -r_curr || bminy > r_curr || bmaxy < -r_curr) { /* the bounding box does not overlap the square centered at O.*/ tree += level; level = tree & -tree; } else if (level == 1) { /* the maximum recursion depth is reached. * check if dP0.(Q-P0)>=0 and dPn.(Pn-Q)>=0. * dP* is reversed if necessary.*/ float t = isect->t; float u = 0.0f; if(flags & CURVE_KN_RIBBONS) { float3 tg = (p_en - p_st); float w = tg.x * tg.x + tg.y * tg.y; if (w == 0) { tree++; level = tree & -tree; continue; } w = -(p_st.x * tg.x + p_st.y * tg.y) / w; w = clamp((float)w, 0.0f, 1.0f); /* compute u on the curve segment.*/ u = i_st * (1 - w) + i_en * w; r_curr = r_st + (r_en - r_st) * u; /* compare x-y distances.*/ float3 p_curr = ((curve_coef[3] * u + curve_coef[2]) * u + curve_coef[1]) * u + curve_coef[0]; float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1]; if (dot(tg, dp_st)< 0) dp_st *= -1; if (dot(dp_st, -p_st) + p_curr.z * dp_st.z < 0) { tree++; level = tree & -tree; continue; } float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1]; if (dot(tg, dp_en) < 0) dp_en *= -1; if (dot(dp_en, p_en) - p_curr.z * dp_en.z < 0) { tree++; level = tree & -tree; continue; } if (p_curr.x * p_curr.x + p_curr.y * p_curr.y >= r_curr * r_curr || p_curr.z <= 0.0f) { tree++; level = tree & -tree; continue; } /* compare z distances.*/ if (isect->t < p_curr.z) { tree++; level = tree & -tree; continue; } t = p_curr.z; } else { float l = len(p_en - p_st); float3 tg = (p_en - p_st) / l; float gd = (r2 - r1) / l; float difz = -dot(p_st,tg); float cyla = 1.0f - (tg.z * tg.z * (1 + gd*gd)); float halfb = (-p_st.z - tg.z*(difz + gd*(difz*gd + r1))); float tcentre = -halfb/cyla; float zcentre = difz + (tg.z * tcentre); float3 tdif = - p_st; tdif.z += tcentre; float tdifz = dot(tdif,tg); float tb = 2*(tdif.z - tg.z*(tdifz + gd*(tdifz*gd + r1))); float tc = dot(tdif,tdif) - tdifz * tdifz * (1 + gd*gd) - r1*r1 - 2*r1*tdifz*gd; float td = tb*tb - 4*cyla*tc; if (td < 0.0f){ tree++; level = tree & -tree; continue; } float rootd = sqrtf(td); float correction = ((-tb - rootd)/(2*cyla)); t = tcentre + correction; float w = (zcentre + (tg.z * correction))/l; float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1]; if (dot(tg, dp_st)< 0) dp_st *= -1; float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1]; if (dot(tg, dp_en) < 0) dp_en *= -1; if(flags & CURVE_KN_BACKFACING && (dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f)) { correction = ((-tb + rootd)/(2*cyla)); t = tcentre + correction; w = (zcentre + (tg.z * correction))/l; } if (dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f) { tree++; level = tree & -tree; continue; } w = clamp((float)w, 0.0f, 1.0f); /* compute u on the curve segment.*/ u = i_st * (1 - w) + i_en * w; } /* we found a new intersection.*/ #ifdef __VISIBILITY_FLAG__ /* visibility flag test. we do it here under the assumption * that most triangles are culled by node flags */ if(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility) #endif { /* record intersection */ isect->prim = curveAddr; isect->segment = segment; isect->object = object; isect->u = u; isect->v = 0.0f; isect->t = t; } tree++; level = tree & -tree; } else { /* split the curve into two curves and process */ level = level >> 1; } } } __device_inline void bvh_curve_intersect(KernelGlobals *kg, Intersection *isect, float3 P, float3 idir, uint visibility, int object, int curveAddr, int segment) { /* curve Intersection check */ int flags = kernel_data.curve_kernel_data.curveflags; int prim = kernel_tex_fetch(__prim_index, curveAddr); float4 v00 = kernel_tex_fetch(__curves, prim); int k0 = __float_as_int(v00.x) + segment; int k1 = k0 + 1; float4 P1 = kernel_tex_fetch(__curve_keys, k0); float4 P2 = kernel_tex_fetch(__curve_keys, k1); float r1 = P1.w; float r2 = P2.w; float mr = max(r1,r2); float3 p1 = float4_to_float3(P1); float3 p2 = float4_to_float3(P2); float3 dif = P - p1; float3 dir = 1.0f/idir; float l = len(p2 - p1); float sp_r = mr + 0.5f * l; float3 sphere_dif = P - ((p1 + p2) * 0.5f); float sphere_b = dot(dir,sphere_dif); sphere_dif = sphere_dif - sphere_b * dir; sphere_b = dot(dir,sphere_dif); float sdisc = sphere_b * sphere_b - len_squared(sphere_dif) + sp_r * sp_r; if(sdisc < 0.0f) return; /* obtain parameters and test midpoint distance for suitable modes*/ float3 tg = (p2 - p1) / l; float gd = (r2 - r1) / l; float dirz = dot(dir,tg); float difz = dot(dif,tg); float a = 1.0f - (dirz*dirz*(1 + gd*gd)); float halfb = (dot(dir,dif) - dirz*(difz + gd*(difz*gd + r1))); float tcentre = -halfb/a; float zcentre = difz + (dirz * tcentre); if((tcentre > isect->t) && !(flags & CURVE_KN_ACCURATE)) return; if((zcentre < 0 || zcentre > l) && !(flags & CURVE_KN_ACCURATE) && !(flags & CURVE_KN_INTERSECTCORRECTION)) return; /* test minimum separation*/ float3 cprod = cross(tg, dir); float3 cprod2 = cross(tg, dif); float cprodsq = len_squared(cprod); float cprod2sq = len_squared(cprod2); float distscaled = dot(cprod,dif); if(cprodsq == 0) distscaled = cprod2sq; else distscaled = (distscaled*distscaled)/cprodsq; if(distscaled > mr*mr) return; /* calculate true intersection*/ float3 tdif = P - p1 + tcentre * dir; float tdifz = dot(tdif,tg); float tb = 2*(dot(dir,tdif) - dirz*(tdifz + gd*(tdifz*gd + r1))); float tc = dot(tdif,tdif) - tdifz * tdifz * (1 + gd*gd) - r1*r1 - 2*r1*tdifz*gd; float td = tb*tb - 4*a*tc; if (td < 0.0f) return; float rootd = 0.0f; float correction = 0.0f; if(flags & CURVE_KN_ACCURATE) { rootd = sqrtf(td); correction = ((-tb - rootd)/(2*a)); } float t = tcentre + correction; if(t < isect->t) { if(flags & CURVE_KN_INTERSECTCORRECTION) { rootd = sqrtf(td); correction = ((-tb - rootd)/(2*a)); t = tcentre + correction; } float z = zcentre + (dirz * correction); bool backface = false; if(flags & CURVE_KN_BACKFACING && (t < 0.0f || z < 0 || z > l)) { backface = true; correction = ((-tb + rootd)/(2*a)); t = tcentre + correction; z = zcentre + (dirz * correction); } if(t > 0.0f && t < isect->t && z >= 0 && z <= l) { if (flags & CURVE_KN_ENCLOSEFILTER) { float enc_ratio = kernel_data.curve_kernel_data.encasing_ratio; if((dot(P - p1, tg) > -r1 * enc_ratio) && (dot(P - p2, tg) < r2 * enc_ratio)) { float a2 = 1.0f - (dirz*dirz*(1 + gd*gd*enc_ratio*enc_ratio)); float c2 = dot(dif,dif) - difz * difz * (1 + gd*gd*enc_ratio*enc_ratio) - r1*r1*enc_ratio*enc_ratio - 2*r1*difz*gd*enc_ratio; if(a2*c2 < 0.0f) return; } } #ifdef __VISIBILITY_FLAG__ /* visibility flag test. we do it here under the assumption * that most triangles are culled by node flags */ if(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility) #endif { /* record intersection */ isect->prim = curveAddr; isect->segment = segment; isect->object = object; isect->u = z/l; isect->v = td/(4*a*a); isect->t = t; if(backface) isect->u = -isect->u; } } } } #endif __device bool bvh_intersect(KernelGlobals *kg, const Ray *ray, const uint visibility, Intersection *isect) { /* traversal stack in CUDA thread-local memory */ int traversalStack[BVH_STACK_SIZE]; traversalStack[0] = ENTRYPOINT_SENTINEL; /* traversal variables in registers */ int stackPtr = 0; int nodeAddr = kernel_data.bvh.root; /* ray parameters in registers */ const float tmax = ray->t; float3 P = ray->P; float3 idir = bvh_inverse_direction(ray->D); int object = ~0; isect->t = tmax; isect->object = ~0; isect->prim = ~0; isect->u = 0.0f; isect->v = 0.0f; /* traversal loop */ do { do { /* traverse internal nodes */ while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL) { bool traverseChild0, traverseChild1, closestChild1; int nodeAddrChild1; bvh_node_intersect(kg, &traverseChild0, &traverseChild1, &closestChild1, &nodeAddr, &nodeAddrChild1, P, idir, isect->t, visibility, nodeAddr); if(traverseChild0 != traverseChild1) { /* one child was intersected */ if(traverseChild1) { nodeAddr = nodeAddrChild1; } } else { if(!traverseChild0) { /* neither child was intersected */ nodeAddr = traversalStack[stackPtr]; --stackPtr; } else { /* both children were intersected, push the farther one */ if(closestChild1) { int tmp = nodeAddr; nodeAddr = nodeAddrChild1; nodeAddrChild1 = tmp; } ++stackPtr; traversalStack[stackPtr] = nodeAddrChild1; } } } /* if node is leaf, fetch triangle list */ if(nodeAddr < 0) { float4 leaf = kernel_tex_fetch(__bvh_nodes, (-nodeAddr-1)*BVH_NODE_SIZE+(BVH_NODE_SIZE-1)); int primAddr = __float_as_int(leaf.x); #ifdef __INSTANCING__ if(primAddr >= 0) { #endif int primAddr2 = __float_as_int(leaf.y); /* pop */ nodeAddr = traversalStack[stackPtr]; --stackPtr; /* primitive intersection */ while(primAddr < primAddr2) { /* intersect ray against primitive */ #ifdef __HAIR__ uint segment = kernel_tex_fetch(__prim_segment, primAddr); if(segment != ~0) { if(kernel_data.curve_kernel_data.curveflags & CURVE_KN_INTERPOLATE) bvh_cardinal_curve_intersect(kg, isect, P, idir, visibility, object, primAddr, segment); else bvh_curve_intersect(kg, isect, P, idir, visibility, object, primAddr, segment); } else #endif bvh_triangle_intersect(kg, isect, P, idir, visibility, object, primAddr); /* shadow ray early termination */ if(visibility == PATH_RAY_SHADOW_OPAQUE && isect->prim != ~0) return true; primAddr++; } #ifdef __INSTANCING__ } else { /* instance push */ object = kernel_tex_fetch(__prim_object, -primAddr-1); bvh_instance_push(kg, object, ray, &P, &idir, &isect->t, tmax); ++stackPtr; traversalStack[stackPtr] = ENTRYPOINT_SENTINEL; nodeAddr = kernel_tex_fetch(__object_node, object); } #endif } } while(nodeAddr != ENTRYPOINT_SENTINEL); #ifdef __INSTANCING__ if(stackPtr >= 0) { kernel_assert(object != ~0); /* instance pop */ bvh_instance_pop(kg, object, ray, &P, &idir, &isect->t, tmax); object = ~0; nodeAddr = traversalStack[stackPtr]; --stackPtr; } #endif } while(nodeAddr != ENTRYPOINT_SENTINEL); return (isect->prim != ~0); } #ifdef __OBJECT_MOTION__ __device bool bvh_intersect_motion(KernelGlobals *kg, const Ray *ray, const uint visibility, Intersection *isect) { /* traversal stack in CUDA thread-local memory */ int traversalStack[BVH_STACK_SIZE]; traversalStack[0] = ENTRYPOINT_SENTINEL; /* traversal variables in registers */ int stackPtr = 0; int nodeAddr = kernel_data.bvh.root; /* ray parameters in registers */ const float tmax = ray->t; float3 P = ray->P; float3 idir = bvh_inverse_direction(ray->D); int object = ~0; Transform ob_tfm; isect->t = tmax; isect->object = ~0; isect->prim = ~0; isect->u = 0.0f; isect->v = 0.0f; /* traversal loop */ do { do { /* traverse internal nodes */ while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL) { bool traverseChild0, traverseChild1, closestChild1; int nodeAddrChild1; bvh_node_intersect(kg, &traverseChild0, &traverseChild1, &closestChild1, &nodeAddr, &nodeAddrChild1, P, idir, isect->t, visibility, nodeAddr); if(traverseChild0 != traverseChild1) { /* one child was intersected */ if(traverseChild1) { nodeAddr = nodeAddrChild1; } } else { if(!traverseChild0) { /* neither child was intersected */ nodeAddr = traversalStack[stackPtr]; --stackPtr; } else { /* both children were intersected, push the farther one */ if(closestChild1) { int tmp = nodeAddr; nodeAddr = nodeAddrChild1; nodeAddrChild1 = tmp; } ++stackPtr; traversalStack[stackPtr] = nodeAddrChild1; } } } /* if node is leaf, fetch triangle list */ if(nodeAddr < 0) { float4 leaf = kernel_tex_fetch(__bvh_nodes, (-nodeAddr-1)*BVH_NODE_SIZE+(BVH_NODE_SIZE-1)); int primAddr = __float_as_int(leaf.x); if(primAddr >= 0) { int primAddr2 = __float_as_int(leaf.y); /* pop */ nodeAddr = traversalStack[stackPtr]; --stackPtr; /* primitive intersection */ while(primAddr < primAddr2) { /* intersect ray against primitive */ #ifdef __HAIR__ uint segment = kernel_tex_fetch(__prim_segment, primAddr); if(segment != ~0) { if(kernel_data.curve_kernel_data.curveflags & CURVE_KN_INTERPOLATE) bvh_cardinal_curve_intersect(kg, isect, P, idir, visibility, object, primAddr, segment); else bvh_curve_intersect(kg, isect, P, idir, visibility, object, primAddr, segment); } else #endif bvh_triangle_intersect(kg, isect, P, idir, visibility, object, primAddr); /* shadow ray early termination */ if(visibility == PATH_RAY_SHADOW_OPAQUE && isect->prim != ~0) return true; primAddr++; } } else { /* instance push */ object = kernel_tex_fetch(__prim_object, -primAddr-1); bvh_instance_motion_push(kg, object, ray, &P, &idir, &isect->t, &ob_tfm, tmax); ++stackPtr; traversalStack[stackPtr] = ENTRYPOINT_SENTINEL; nodeAddr = kernel_tex_fetch(__object_node, object); } } } while(nodeAddr != ENTRYPOINT_SENTINEL); if(stackPtr >= 0) { kernel_assert(object != ~0); /* instance pop */ bvh_instance_motion_pop(kg, object, ray, &P, &idir, &isect->t, &ob_tfm, tmax); object = ~0; nodeAddr = traversalStack[stackPtr]; --stackPtr; } } while(nodeAddr != ENTRYPOINT_SENTINEL); return (isect->prim != ~0); } #endif __device_inline bool scene_intersect(KernelGlobals *kg, const Ray *ray, const uint visibility, Intersection *isect) { #ifdef __OBJECT_MOTION__ if(kernel_data.bvh.have_motion) return bvh_intersect_motion(kg, ray, visibility, isect); else return bvh_intersect(kg, ray, visibility, isect); #else return bvh_intersect(kg, ray, visibility, isect); #endif } __device_inline float3 ray_offset(float3 P, float3 Ng) { #ifdef __INTERSECTION_REFINE__ const float epsilon_f = 1e-5f; /* ideally this should match epsilon_f, but instancing/mblur * precision makes it problematic */ const float epsilon_test = 1.0f; const int epsilon_i = 32; float3 res; /* x component */ if(fabsf(P.x) < epsilon_test) { res.x = P.x + Ng.x*epsilon_f; } else { uint ix = __float_as_uint(P.x); ix += ((ix ^ __float_as_uint(Ng.x)) >> 31)? -epsilon_i: epsilon_i; res.x = __uint_as_float(ix); } /* y component */ if(fabsf(P.y) < epsilon_test) { res.y = P.y + Ng.y*epsilon_f; } else { uint iy = __float_as_uint(P.y); iy += ((iy ^ __float_as_uint(Ng.y)) >> 31)? -epsilon_i: epsilon_i; res.y = __uint_as_float(iy); } /* z component */ if(fabsf(P.z) < epsilon_test) { res.z = P.z + Ng.z*epsilon_f; } else { uint iz = __float_as_uint(P.z); iz += ((iz ^ __float_as_uint(Ng.z)) >> 31)? -epsilon_i: epsilon_i; res.z = __uint_as_float(iz); } return res; #else const float epsilon_f = 1e-4f; return P + epsilon_f*Ng; #endif } __device_inline float3 bvh_triangle_refine(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray) { float3 P = ray->P; float3 D = ray->D; float t = isect->t; #ifdef __INTERSECTION_REFINE__ if(isect->object != ~0) { #ifdef __OBJECT_MOTION__ Transform tfm = sd->ob_itfm; #else Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM); #endif P = transform_point(&tfm, P); D = transform_direction(&tfm, D*t); D = normalize_len(D, &t); } P = P + D*t; float4 v00 = kernel_tex_fetch(__tri_woop, isect->prim*TRI_NODE_SIZE+0); float Oz = v00.w - P.x*v00.x - P.y*v00.y - P.z*v00.z; float invDz = 1.0f/(D.x*v00.x + D.y*v00.y + D.z*v00.z); float rt = Oz * invDz; P = P + D*rt; if(isect->object != ~0) { #ifdef __OBJECT_MOTION__ Transform tfm = sd->ob_tfm; #else Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM); #endif P = transform_point(&tfm, P); } return P; #else return P + D*t; #endif } #ifdef __HAIR__ __device_inline float3 curvetangent(float t, float3 p0, float3 p1, float3 p2, float3 p3) { float fc = 0.71f; float data[4]; float t2 = t * t; data[0] = -3.0f * fc * t2 + 4.0f * fc * t - fc; data[1] = 3.0f * (2.0f - fc) * t2 + 2.0f * (fc - 3.0f) * t; data[2] = 3.0f * (fc - 2.0f) * t2 + 2.0f * (3.0f - 2.0f * fc) * t + fc; data[3] = 3.0f * fc * t2 - 2.0f * fc * t; return data[0] * p0 + data[1] * p1 + data[2] * p2 + data[3] * p3; } __device_inline float3 curvepoint(float t, float3 p0, float3 p1, float3 p2, float3 p3) { float data[4]; float fc = 0.71f; float t2 = t * t; float t3 = t2 * t; data[0] = -fc * t3 + 2.0f * fc * t2 - fc * t; data[1] = (2.0f - fc) * t3 + (fc - 3.0f) * t2 + 1.0f; data[2] = (fc - 2.0f) * t3 + (3.0f - 2.0f * fc) * t2 + fc * t; data[3] = fc * t3 - fc * t2; return data[0] * p0 + data[1] * p1 + data[2] * p2 + data[3] * p3; } __device_inline float3 bvh_curve_refine(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray, float t) { int flag = kernel_data.curve_kernel_data.curveflags; float3 P = ray->P; float3 D = ray->D; if(isect->object != ~0) { #ifdef __OBJECT_MOTION__ Transform tfm = sd->ob_itfm; #else Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM); #endif P = transform_point(&tfm, P); D = transform_direction(&tfm, D*t); D = normalize_len(D, &t); } int prim = kernel_tex_fetch(__prim_index, isect->prim); float4 v00 = kernel_tex_fetch(__curves, prim); int k0 = __float_as_int(v00.x) + isect->segment; int k1 = k0 + 1; float4 P1 = kernel_tex_fetch(__curve_keys, k0); float4 P2 = kernel_tex_fetch(__curve_keys, k1); float l = 1.0f; float3 tg = normalize_len(float4_to_float3(P2 - P1),&l); float r1 = P1.w; float r2 = P2.w; float gd = ((r2 - r1)/l); P = P + D*t; if(flag & CURVE_KN_INTERPOLATE) { int ka = max(k0 - 1,__float_as_int(v00.x)); int kb = min(k1 + 1,__float_as_int(v00.x) + __float_as_int(v00.y) - 1); float4 P0 = kernel_tex_fetch(__curve_keys, ka); float4 P3 = kernel_tex_fetch(__curve_keys, kb); float3 p[4]; p[0] = float4_to_float3(P0); p[1] = float4_to_float3(P1); p[2] = float4_to_float3(P2); p[3] = float4_to_float3(P3); tg = normalize(curvetangent(isect->u,p[0],p[1],p[2],p[3])); float3 p_curr = curvepoint(isect->u,p[0],p[1],p[2],p[3]); #ifdef __UV__ sd->u = isect->u; sd->v = 0.0f; #endif if(kernel_data.curve_kernel_data.curveflags & CURVE_KN_RIBBONS) sd->Ng = normalize(-(D - tg * (dot(tg,D)))); else { sd->Ng = normalize(P - p_curr); sd->Ng = sd->Ng - gd * tg; sd->Ng = normalize(sd->Ng); } sd->N = sd->Ng; } else { float3 dif = P - float4_to_float3(P1); #ifdef __UV__ sd->u = dot(dif,tg)/l; sd->v = 0.0f; #endif if (flag & CURVE_KN_TRUETANGENTGNORMAL) { sd->Ng = -(D - tg * (dot(tg,D) * kernel_data.curve_kernel_data.normalmix)); sd->Ng = normalize(sd->Ng); if (flag & CURVE_KN_NORMALCORRECTION) { sd->Ng = sd->Ng - gd * tg; sd->Ng = normalize(sd->Ng); } } else { sd->Ng = (dif - tg * sd->u * l) / (P1.w + sd->u * l * gd); if (gd != 0.0f) { sd->Ng = sd->Ng - gd * tg ; sd->Ng = normalize(sd->Ng); } } sd->N = sd->Ng; if (flag & CURVE_KN_TANGENTGNORMAL && !(flag & CURVE_KN_TRUETANGENTGNORMAL)) { sd->N = -(D - tg * (dot(tg,D) * kernel_data.curve_kernel_data.normalmix)); sd->N = normalize(sd->N); if (flag & CURVE_KN_NORMALCORRECTION) { sd->N = sd->N - gd * tg; sd->N = normalize(sd->N); } } if (!(flag & CURVE_KN_TANGENTGNORMAL) && flag & CURVE_KN_TRUETANGENTGNORMAL) { sd->N = (dif - tg * sd->u * l) / (P1.w + sd->u * l * gd); if (gd != 0.0f) { sd->N = sd->N - gd * tg ; sd->N = normalize(sd->N); } } } #ifdef __DPDU__ /* dPdu/dPdv */ sd->dPdu = tg; sd->dPdv = cross(tg,sd->Ng); #endif if(isect->object != ~0) { #ifdef __OBJECT_MOTION__ Transform tfm = sd->ob_tfm; #else Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM); #endif P = transform_point(&tfm, P); } return P; } #endif CCL_NAMESPACE_END