/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** * Game object wrapper */ /** \file gameengine/Ketsji/KX_GameObject.cpp * \ingroup ketsji */ #if defined(_WIN64) typedef unsigned __int64 uint_ptr; #else typedef unsigned long uint_ptr; #endif #if defined(WIN32) && !defined(FREE_WINDOWS) // This warning tells us about truncation of __long__ stl-generated names. // It can occasionally cause DevStudio to have internal compiler warnings. #pragma warning( disable : 4786 ) #endif #define KX_INERTIA_INFINITE 10000 #include "RAS_IPolygonMaterial.h" #include "KX_BlenderMaterial.h" #include "KX_GameObject.h" #include "KX_Camera.h" // only for their ::Type #include "KX_Light.h" // only for their ::Type #include "KX_FontObject.h" // only for their ::Type #include "RAS_MeshObject.h" #include "KX_MeshProxy.h" #include "KX_PolyProxy.h" #include // printf #include "SG_Controller.h" #include "KX_IPhysicsController.h" #include "PHY_IGraphicController.h" #include "SG_Node.h" #include "SG_Controller.h" #include "KX_ClientObjectInfo.h" #include "RAS_BucketManager.h" #include "KX_RayCast.h" #include "KX_PythonInit.h" #include "KX_PyMath.h" #include "KX_PythonSeq.h" #include "KX_ConvertPhysicsObject.h" #include "SCA_IActuator.h" #include "SCA_ISensor.h" #include "SCA_IController.h" #include "NG_NetworkScene.h" //Needed for sendMessage() #include "KX_ObstacleSimulation.h" #include "BL_ActionManager.h" #include "PyObjectPlus.h" /* python stuff */ // This file defines relationships between parents and children // in the game engine. #include "KX_SG_NodeRelationships.h" #include "BLI_math.h" static MT_Point3 dummy_point= MT_Point3(0.0, 0.0, 0.0); static MT_Vector3 dummy_scaling = MT_Vector3(1.0, 1.0, 1.0); static MT_Matrix3x3 dummy_orientation = MT_Matrix3x3(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0); KX_GameObject::KX_GameObject( void* sgReplicationInfo, SG_Callbacks callbacks) : SCA_IObject(), m_bDyna(false), m_layer(0), m_pBlenderObject(NULL), m_pBlenderGroupObject(NULL), m_bSuspendDynamics(false), m_bUseObjectColor(false), m_bIsNegativeScaling(false), m_bVisible(true), m_bCulled(true), m_bOccluder(false), m_pPhysicsController1(NULL), m_pGraphicController(NULL), m_xray(false), m_pHitObject(NULL), m_pObstacleSimulation(NULL), m_actionManager(NULL), m_isDeformable(false) #ifdef WITH_PYTHON , m_attr_dict(NULL) #endif { m_ignore_activity_culling = false; m_pClient_info = new KX_ClientObjectInfo(this, KX_ClientObjectInfo::ACTOR); m_pSGNode = new SG_Node(this,sgReplicationInfo,callbacks); // define the relationship between this node and it's parent. KX_NormalParentRelation * parent_relation = KX_NormalParentRelation::New(); m_pSGNode->SetParentRelation(parent_relation); }; KX_GameObject::~KX_GameObject() { RemoveMeshes(); // is this delete somewhere ? //if (m_sumoObj) // delete m_sumoObj; delete m_pClient_info; //if (m_pSGNode) // delete m_pSGNode; if (m_pSGNode) { // must go through controllers and make sure they will not use us anymore // This is important for KX_BulletPhysicsControllers that unregister themselves // from the object when they are deleted. SGControllerList::iterator contit; SGControllerList& controllers = m_pSGNode->GetSGControllerList(); for (contit = controllers.begin();contit!=controllers.end();++contit) { (*contit)->ClearObject(); } m_pSGNode->SetSGClientObject(NULL); /* m_pSGNode is freed in KX_Scene::RemoveNodeDestructObject */ } if (m_pGraphicController) { delete m_pGraphicController; } if (m_pObstacleSimulation) { m_pObstacleSimulation->DestroyObstacleForObj(this); } if (m_actionManager) { KX_GetActiveScene()->RemoveAnimatedObject(this); delete m_actionManager; } #ifdef WITH_PYTHON if (m_attr_dict) { PyDict_Clear(m_attr_dict); /* in case of circular refs or other weird cases */ /* Py_CLEAR: Py_DECREF's and NULL's */ Py_CLEAR(m_attr_dict); } #endif // WITH_PYTHON } KX_GameObject* KX_GameObject::GetClientObject(KX_ClientObjectInfo* info) { if (!info) return NULL; return info->m_gameobject; } CValue* KX_GameObject:: Calc(VALUE_OPERATOR op, CValue *val) { return NULL; } CValue* KX_GameObject::CalcFinal(VALUE_DATA_TYPE dtype, VALUE_OPERATOR op, CValue *val) { return NULL; } const STR_String & KX_GameObject::GetText() { return m_text; } double KX_GameObject::GetNumber() { return 0; } STR_String& KX_GameObject::GetName() { return m_name; } void KX_GameObject::SetName(const char *name) { m_name = name; }; // Set the name of the value KX_IPhysicsController* KX_GameObject::GetPhysicsController() { return m_pPhysicsController1; } KX_GameObject* KX_GameObject::GetParent() { KX_GameObject* result = NULL; SG_Node* node = m_pSGNode; while (node && !result) { node = node->GetSGParent(); if (node) result = (KX_GameObject*)node->GetSGClientObject(); } if (result) result->AddRef(); return result; } void KX_GameObject::SetParent(KX_Scene *scene, KX_GameObject* obj, bool addToCompound, bool ghost) { // check on valid node in case a python controller holds a reference to a deleted object if (obj && GetSGNode() && // object is not zombi obj->GetSGNode() && // object is not zombi GetSGNode()->GetSGParent() != obj->GetSGNode() && // not already parented to same object !GetSGNode()->IsAncessor(obj->GetSGNode()) && // no parenting loop this != obj) // not the object itself { // Make sure the objects have some scale MT_Vector3 scale1 = NodeGetWorldScaling(); MT_Vector3 scale2 = obj->NodeGetWorldScaling(); if (fabs(scale2[0]) < FLT_EPSILON || fabs(scale2[1]) < FLT_EPSILON || fabs(scale2[2]) < FLT_EPSILON || fabs(scale1[0]) < FLT_EPSILON || fabs(scale1[1]) < FLT_EPSILON || fabs(scale1[2]) < FLT_EPSILON) { return; } // Remove us from our old parent and set our new parent RemoveParent(scene); obj->GetSGNode()->AddChild(GetSGNode()); if (m_pPhysicsController1) { m_pPhysicsController1->SuspendDynamics(ghost); } // Set us to our new scale, position, and orientation scale2[0] = 1.0/scale2[0]; scale2[1] = 1.0/scale2[1]; scale2[2] = 1.0/scale2[2]; scale1 = scale1 * scale2; MT_Matrix3x3 invori = obj->NodeGetWorldOrientation().inverse(); MT_Vector3 newpos = invori*(NodeGetWorldPosition()-obj->NodeGetWorldPosition())*scale2; NodeSetLocalScale(scale1); NodeSetLocalPosition(MT_Point3(newpos[0],newpos[1],newpos[2])); NodeSetLocalOrientation(invori*NodeGetWorldOrientation()); NodeUpdateGS(0.f); // object will now be a child, it must be removed from the parent list CListValue* rootlist = scene->GetRootParentList(); if (rootlist->RemoveValue(this)) // the object was in parent list, decrement ref count as it's now removed Release(); // if the new parent is a compound object, add this object shape to the compound shape. // step 0: verify this object has physical controller if (m_pPhysicsController1 && addToCompound) { // step 1: find the top parent (not necessarily obj) KX_GameObject* rootobj = (KX_GameObject*)obj->GetSGNode()->GetRootSGParent()->GetSGClientObject(); // step 2: verify it has a physical controller and compound shape if (rootobj != NULL && rootobj->m_pPhysicsController1 != NULL && rootobj->m_pPhysicsController1->IsCompound()) { rootobj->m_pPhysicsController1->AddCompoundChild(m_pPhysicsController1); } } // graphically, the object hasn't change place, no need to update m_pGraphicController } } void KX_GameObject::RemoveParent(KX_Scene *scene) { // check on valid node in case a python controller holds a reference to a deleted object if (GetSGNode() && GetSGNode()->GetSGParent()) { // get the root object to remove us from compound object if needed KX_GameObject* rootobj = (KX_GameObject*)GetSGNode()->GetRootSGParent()->GetSGClientObject(); // Set us to the right spot GetSGNode()->SetLocalScale(GetSGNode()->GetWorldScaling()); GetSGNode()->SetLocalOrientation(GetSGNode()->GetWorldOrientation()); GetSGNode()->SetLocalPosition(GetSGNode()->GetWorldPosition()); // Remove us from our parent GetSGNode()->DisconnectFromParent(); NodeUpdateGS(0.f); // the object is now a root object, add it to the parentlist CListValue* rootlist = scene->GetRootParentList(); if (!rootlist->SearchValue(this)) // object was not in root list, add it now and increment ref count rootlist->Add(AddRef()); if (m_pPhysicsController1) { // in case this controller was added as a child shape to the parent if (rootobj != NULL && rootobj->m_pPhysicsController1 != NULL && rootobj->m_pPhysicsController1->IsCompound()) { rootobj->m_pPhysicsController1->RemoveCompoundChild(m_pPhysicsController1); } m_pPhysicsController1->RestoreDynamics(); if (m_pPhysicsController1->IsDyna() && (rootobj != NULL && rootobj->m_pPhysicsController1)) { // dynamic object should remember the velocity they had while being parented MT_Point3 childPoint = GetSGNode()->GetWorldPosition(); MT_Point3 rootPoint = rootobj->GetSGNode()->GetWorldPosition(); MT_Point3 relPoint; relPoint = (childPoint-rootPoint); MT_Vector3 linVel = rootobj->m_pPhysicsController1->GetVelocity(relPoint); MT_Vector3 angVel = rootobj->m_pPhysicsController1->GetAngularVelocity(); m_pPhysicsController1->SetLinearVelocity(linVel, false); m_pPhysicsController1->SetAngularVelocity(angVel, false); } } // graphically, the object hasn't change place, no need to update m_pGraphicController } } BL_ActionManager* KX_GameObject::GetActionManager() { // We only want to create an action manager if we need it if (!m_actionManager) { KX_GetActiveScene()->AddAnimatedObject(this); m_actionManager = new BL_ActionManager(this); } return m_actionManager; } bool KX_GameObject::PlayAction(const char* name, float start, float end, short layer, short priority, float blendin, short play_mode, float layer_weight, short ipo_flags, float playback_speed) { return GetActionManager()->PlayAction(name, start, end, layer, priority, blendin, play_mode, layer_weight, ipo_flags, playback_speed); } void KX_GameObject::StopAction(short layer) { GetActionManager()->StopAction(layer); } bool KX_GameObject::IsActionDone(short layer) { return GetActionManager()->IsActionDone(layer); } void KX_GameObject::UpdateActionManager(float curtime) { GetActionManager()->Update(curtime); } float KX_GameObject::GetActionFrame(short layer) { return GetActionManager()->GetActionFrame(layer); } void KX_GameObject::SetActionFrame(short layer, float frame) { GetActionManager()->SetActionFrame(layer, frame); } bAction *KX_GameObject::GetCurrentAction(short layer) { return GetActionManager()->GetCurrentAction(layer); } void KX_GameObject::SetPlayMode(short layer, short mode) { GetActionManager()->SetPlayMode(layer, mode); } void KX_GameObject::SetTimes(short layer, float start, float end) { GetActionManager()->SetTimes(layer, start, end); } void KX_GameObject::ProcessReplica() { SCA_IObject::ProcessReplica(); m_pPhysicsController1 = NULL; m_pGraphicController = NULL; m_pSGNode = NULL; m_pClient_info = new KX_ClientObjectInfo(*m_pClient_info); m_pClient_info->m_gameobject = this; if (m_actionManager) m_actionManager = new BL_ActionManager(this); m_state = 0; KX_Scene* scene = KX_GetActiveScene(); KX_ObstacleSimulation* obssimulation = scene->GetObstacleSimulation(); struct Object* blenderobject = GetBlenderObject(); if (obssimulation && (blenderobject->gameflag & OB_HASOBSTACLE)) { obssimulation->AddObstacleForObj(this); } #ifdef WITH_PYTHON if(m_attr_dict) m_attr_dict= PyDict_Copy(m_attr_dict); #endif } static void setGraphicController_recursive(SG_Node* node) { NodeList& children = node->GetSGChildren(); for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit) { SG_Node* childnode = (*childit); KX_GameObject *clientgameobj = static_cast( (*childit)->GetSGClientObject()); if (clientgameobj != NULL) // This is a GameObject clientgameobj->ActivateGraphicController(false); // if the childobj is NULL then this may be an inverse parent link // so a non recursive search should still look down this node. setGraphicController_recursive(childnode); } } void KX_GameObject::ActivateGraphicController(bool recurse) { if (m_pGraphicController) { m_pGraphicController->Activate(m_bVisible); } if (recurse) { setGraphicController_recursive(GetSGNode()); } } CValue* KX_GameObject::GetReplica() { KX_GameObject* replica = new KX_GameObject(*this); // this will copy properties and so on... replica->ProcessReplica(); return replica; } void KX_GameObject::ApplyForce(const MT_Vector3& force,bool local) { if (m_pPhysicsController1) m_pPhysicsController1->ApplyForce(force,local); } void KX_GameObject::ApplyTorque(const MT_Vector3& torque,bool local) { if (m_pPhysicsController1) m_pPhysicsController1->ApplyTorque(torque,local); } void KX_GameObject::ApplyMovement(const MT_Vector3& dloc,bool local) { if (GetSGNode()) { if (m_pPhysicsController1) // (IsDynamic()) { m_pPhysicsController1->RelativeTranslate(dloc,local); } GetSGNode()->RelativeTranslate(dloc,GetSGNode()->GetSGParent(),local); } } void KX_GameObject::ApplyRotation(const MT_Vector3& drot,bool local) { MT_Matrix3x3 rotmat(drot); if (GetSGNode()) { GetSGNode()->RelativeRotate(rotmat,local); if (m_pPhysicsController1) { // (IsDynamic()) m_pPhysicsController1->RelativeRotate(rotmat,local); } } } /** * GetOpenGL Matrix, returns an OpenGL 'compatible' matrix */ double* KX_GameObject::GetOpenGLMatrix() { // todo: optimize and only update if necessary double* fl = m_OpenGL_4x4Matrix.getPointer(); if (GetSGNode()) { MT_Transform trans; trans.setOrigin(GetSGNode()->GetWorldPosition()); trans.setBasis(GetSGNode()->GetWorldOrientation()); MT_Vector3 scaling = GetSGNode()->GetWorldScaling(); m_bIsNegativeScaling = ((scaling[0] < 0.0) ^ (scaling[1] < 0.0) ^ (scaling[2] < 0.0)) ? true : false; trans.scale(scaling[0], scaling[1], scaling[2]); trans.getValue(fl); GetSGNode()->ClearDirty(); } return fl; } void KX_GameObject::UpdateBlenderObjectMatrix(Object* blendobj) { if (!blendobj) blendobj = m_pBlenderObject; if (blendobj) { const MT_Matrix3x3& rot = NodeGetWorldOrientation(); const MT_Vector3& scale = NodeGetWorldScaling(); const MT_Vector3& pos = NodeGetWorldPosition(); rot.getValue(blendobj->obmat[0]); pos.getValue(blendobj->obmat[3]); mul_v3_fl(blendobj->obmat[0], scale[0]); mul_v3_fl(blendobj->obmat[1], scale[1]); mul_v3_fl(blendobj->obmat[2], scale[2]); } } void KX_GameObject::AddMeshUser() { for (size_t i=0;iAddMeshUser(this, &m_meshSlots, GetDeformer()); } // set the part of the mesh slot that never change double* fl = GetOpenGLMatrixPtr()->getPointer(); SG_QList::iterator mit(m_meshSlots); // RAS_MeshSlot* ms; for(mit.begin(); !mit.end(); ++mit) { (*mit)->m_OpenGLMatrix = fl; } UpdateBuckets(false); } static void UpdateBuckets_recursive(SG_Node* node) { NodeList& children = node->GetSGChildren(); for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit) { SG_Node* childnode = (*childit); KX_GameObject *clientgameobj = static_cast( (*childit)->GetSGClientObject()); if (clientgameobj != NULL) // This is a GameObject clientgameobj->UpdateBuckets(0); // if the childobj is NULL then this may be an inverse parent link // so a non recursive search should still look down this node. UpdateBuckets_recursive(childnode); } } void KX_GameObject::UpdateBuckets( bool recursive ) { if (GetSGNode()) { RAS_MeshSlot *ms; if (GetSGNode()->IsDirty()) GetOpenGLMatrix(); SG_QList::iterator mit(m_meshSlots); for(mit.begin(); !mit.end(); ++mit) { ms = *mit; ms->m_bObjectColor = m_bUseObjectColor; ms->m_RGBAcolor = m_objectColor; ms->m_bVisible = m_bVisible; ms->m_bCulled = m_bCulled || !m_bVisible; if (!ms->m_bCulled) ms->m_bucket->ActivateMesh(ms); /* split if necessary */ #ifdef USE_SPLIT ms->Split(); #endif } if (recursive) { UpdateBuckets_recursive(GetSGNode()); } } } void KX_GameObject::RemoveMeshes() { for (size_t i=0;iRemoveFromBuckets(this); //note: meshes can be shared, and are deleted by KX_BlenderSceneConverter m_meshes.clear(); } void KX_GameObject::UpdateTransform() { // HACK: saves function call for dynamic object, they are handled differently if (m_pPhysicsController1 && !m_pPhysicsController1->IsDyna()) // Note that for Bullet, this does not even update the transform of static object // but merely sets there collision flag to "kinematic" because the synchronization is // done during physics simulation m_pPhysicsController1->SetSumoTransform(true); if (m_pGraphicController) // update the culling tree m_pGraphicController->SetGraphicTransform(); } void KX_GameObject::UpdateTransformFunc(SG_IObject* node, void* gameobj, void* scene) { ((KX_GameObject*)gameobj)->UpdateTransform(); } void KX_GameObject::SynchronizeTransform() { // only used for sensor object, do full synchronization as bullet doesn't do it if (m_pPhysicsController1) m_pPhysicsController1->SetTransform(); if (m_pGraphicController) m_pGraphicController->SetGraphicTransform(); } void KX_GameObject::SynchronizeTransformFunc(SG_IObject* node, void* gameobj, void* scene) { ((KX_GameObject*)gameobj)->SynchronizeTransform(); } void KX_GameObject::SetDebugColor(unsigned int bgra) { for (size_t i=0;iDebugColor(bgra); } void KX_GameObject::ResetDebugColor() { SetDebugColor(0xff000000); } void KX_GameObject::InitIPO(bool ipo_as_force, bool ipo_add, bool ipo_local) { SGControllerList::iterator it = GetSGNode()->GetSGControllerList().begin(); while (it != GetSGNode()->GetSGControllerList().end()) { (*it)->SetOption(SG_Controller::SG_CONTR_IPO_RESET, true); (*it)->SetOption(SG_Controller::SG_CONTR_IPO_IPO_AS_FORCE, ipo_as_force); (*it)->SetOption(SG_Controller::SG_CONTR_IPO_IPO_ADD, ipo_add); (*it)->SetOption(SG_Controller::SG_CONTR_IPO_LOCAL, ipo_local); it++; } } void KX_GameObject::UpdateIPO(float curframetime, bool recurse) { // just the 'normal' update procedure. GetSGNode()->SetSimulatedTime(curframetime,recurse); GetSGNode()->UpdateWorldData(curframetime); UpdateTransform(); } // IPO update void KX_GameObject::UpdateMaterialData( dword matname_hash, MT_Vector4 rgba, MT_Vector3 specrgb, MT_Scalar hard, MT_Scalar spec, MT_Scalar ref, MT_Scalar emit, MT_Scalar alpha ) { int mesh = 0; if (((unsigned int)mesh < m_meshes.size()) && mesh >= 0) { list::iterator mit = m_meshes[mesh]->GetFirstMaterial(); for(; mit != m_meshes[mesh]->GetLastMaterial(); ++mit) { RAS_IPolyMaterial* poly = mit->m_bucket->GetPolyMaterial(); if(poly->GetFlag() & RAS_BLENDERMAT ) { KX_BlenderMaterial *m = static_cast(poly); if (matname_hash == 0) { m->UpdateIPO(rgba, specrgb,hard,spec,ref,emit, alpha); // if mesh has only one material attached to it then use original hack with no need to edit vertices (better performance) SetObjectColor(rgba); } else { if (matname_hash == poly->GetMaterialNameHash()) { m->UpdateIPO(rgba, specrgb,hard,spec,ref,emit, alpha); m_meshes[mesh]->SetVertexColor(poly,rgba); // no break here, because one blender material can be split into several game engine materials // (e.g. one uvsphere material is split into one material at poles with ras_mode TRIANGLE and one material for the body // if here was a break then would miss some vertices if material was split } } } } } } bool KX_GameObject::GetVisible( void ) { return m_bVisible; } static void setVisible_recursive(SG_Node* node, bool v) { NodeList& children = node->GetSGChildren(); for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit) { SG_Node* childnode = (*childit); KX_GameObject *clientgameobj = static_cast( (*childit)->GetSGClientObject()); if (clientgameobj != NULL) // This is a GameObject clientgameobj->SetVisible(v, 0); // if the childobj is NULL then this may be an inverse parent link // so a non recursive search should still look down this node. setVisible_recursive(childnode, v); } } void KX_GameObject::SetVisible( bool v, bool recursive ) { if (GetSGNode()) { m_bVisible = v; if (m_pGraphicController) m_pGraphicController->Activate(m_bVisible); if (recursive) setVisible_recursive(GetSGNode(), v); } } static void setOccluder_recursive(SG_Node* node, bool v) { NodeList& children = node->GetSGChildren(); for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit) { SG_Node* childnode = (*childit); KX_GameObject *clientgameobj = static_cast( (*childit)->GetSGClientObject()); if (clientgameobj != NULL) // This is a GameObject clientgameobj->SetOccluder(v, false); // if the childobj is NULL then this may be an inverse parent link // so a non recursive search should still look down this node. setOccluder_recursive(childnode, v); } } void KX_GameObject::SetOccluder( bool v, bool recursive ) { if (GetSGNode()) { m_bOccluder = v; if (recursive) setOccluder_recursive(GetSGNode(), v); } } void KX_GameObject::SetLayer( int l ) { m_layer = l; } int KX_GameObject::GetLayer( void ) { return m_layer; } void KX_GameObject::addLinearVelocity(const MT_Vector3& lin_vel,bool local) { if (m_pPhysicsController1) { MT_Vector3 lv = local ? NodeGetWorldOrientation() * lin_vel : lin_vel; m_pPhysicsController1->SetLinearVelocity(lv + m_pPhysicsController1->GetLinearVelocity(), 0); } } void KX_GameObject::setLinearVelocity(const MT_Vector3& lin_vel,bool local) { if (m_pPhysicsController1) m_pPhysicsController1->SetLinearVelocity(lin_vel,local); } void KX_GameObject::setAngularVelocity(const MT_Vector3& ang_vel,bool local) { if (m_pPhysicsController1) m_pPhysicsController1->SetAngularVelocity(ang_vel,local); } void KX_GameObject::ResolveCombinedVelocities( const MT_Vector3 & lin_vel, const MT_Vector3 & ang_vel, bool lin_vel_local, bool ang_vel_local ){ if (m_pPhysicsController1) { MT_Vector3 lv = lin_vel_local ? NodeGetWorldOrientation() * lin_vel : lin_vel; MT_Vector3 av = ang_vel_local ? NodeGetWorldOrientation() * ang_vel : ang_vel; m_pPhysicsController1->resolveCombinedVelocities( lv.x(),lv.y(),lv.z(),av.x(),av.y(),av.z()); } } void KX_GameObject::SetObjectColor(const MT_Vector4& rgbavec) { m_bUseObjectColor = true; m_objectColor = rgbavec; } const MT_Vector4& KX_GameObject::GetObjectColor() { return m_objectColor; } void KX_GameObject::AlignAxisToVect(const MT_Vector3& dir, int axis, float fac) { MT_Matrix3x3 orimat; MT_Vector3 vect,ori,z,x,y; MT_Scalar len; // check on valid node in case a python controller holds a reference to a deleted object if (!GetSGNode()) return; vect = dir; len = vect.length(); if (MT_fuzzyZero(len)) { cout << "alignAxisToVect() Error: Null vector!\n"; return; } if (fac<=0.0) { return; } // normalize vect /= len; orimat = GetSGNode()->GetWorldOrientation(); switch (axis) { case 0: //x axis ori.setValue(orimat[0][2], orimat[1][2], orimat[2][2]); //pivot axis if (MT_abs(vect.dot(ori)) > 1.0-3.0*MT_EPSILON) //is the vector parallel to the pivot? ori.setValue(orimat[0][1], orimat[1][1], orimat[2][1]); //change the pivot! if (fac == 1.0) { x = vect; } else { x = (vect * fac) + ((orimat * MT_Vector3(1.0, 0.0, 0.0)) * (1-fac)); len = x.length(); if (MT_fuzzyZero(len)) x = vect; else x /= len; } y = ori.cross(x); z = x.cross(y); break; case 1: //y axis ori.setValue(orimat[0][0], orimat[1][0], orimat[2][0]); if (MT_abs(vect.dot(ori)) > 1.0-3.0*MT_EPSILON) ori.setValue(orimat[0][2], orimat[1][2], orimat[2][2]); if (fac == 1.0) { y = vect; } else { y = (vect * fac) + ((orimat * MT_Vector3(0.0, 1.0, 0.0)) * (1-fac)); len = y.length(); if (MT_fuzzyZero(len)) y = vect; else y /= len; } z = ori.cross(y); x = y.cross(z); break; case 2: //z axis ori.setValue(orimat[0][1], orimat[1][1], orimat[2][1]); if (MT_abs(vect.dot(ori)) > 1.0-3.0*MT_EPSILON) ori.setValue(orimat[0][0], orimat[1][0], orimat[2][0]); if (fac == 1.0) { z = vect; } else { z = (vect * fac) + ((orimat * MT_Vector3(0.0, 0.0, 1.0)) * (1-fac)); len = z.length(); if (MT_fuzzyZero(len)) z = vect; else z /= len; } x = ori.cross(z); y = z.cross(x); break; default: //wrong input? cout << "alignAxisToVect(): Wrong axis '" << axis <<"'\n"; return; } x.normalize(); //normalize the vectors y.normalize(); z.normalize(); orimat.setValue( x[0],y[0],z[0], x[1],y[1],z[1], x[2],y[2],z[2]); if (GetSGNode()->GetSGParent() != NULL) { // the object is a child, adapt its local orientation so that // the global orientation is aligned as we want. MT_Matrix3x3 invori = GetSGNode()->GetSGParent()->GetWorldOrientation().inverse(); NodeSetLocalOrientation(invori*orimat); } else NodeSetLocalOrientation(orimat); } MT_Scalar KX_GameObject::GetMass() { if (m_pPhysicsController1) { return m_pPhysicsController1->GetMass(); } return 0.0; } MT_Vector3 KX_GameObject::GetLocalInertia() { MT_Vector3 local_inertia(0.0,0.0,0.0); if (m_pPhysicsController1) { local_inertia = m_pPhysicsController1->GetLocalInertia(); } return local_inertia; } MT_Vector3 KX_GameObject::GetLinearVelocity(bool local) { MT_Vector3 velocity(0.0,0.0,0.0), locvel; MT_Matrix3x3 ori; if (m_pPhysicsController1) { velocity = m_pPhysicsController1->GetLinearVelocity(); if (local) { ori = GetSGNode()->GetWorldOrientation(); locvel = velocity * ori; return locvel; } } return velocity; } MT_Vector3 KX_GameObject::GetAngularVelocity(bool local) { MT_Vector3 velocity(0.0,0.0,0.0), locvel; MT_Matrix3x3 ori; if (m_pPhysicsController1) { velocity = m_pPhysicsController1->GetAngularVelocity(); if (local) { ori = GetSGNode()->GetWorldOrientation(); locvel = velocity * ori; return locvel; } } return velocity; } MT_Vector3 KX_GameObject::GetVelocity(const MT_Point3& point) { if (m_pPhysicsController1) { return m_pPhysicsController1->GetVelocity(point); } return MT_Vector3(0.0,0.0,0.0); } // scenegraph node stuff void KX_GameObject::NodeSetLocalPosition(const MT_Point3& trans) { // check on valid node in case a python controller holds a reference to a deleted object if (!GetSGNode()) return; if (m_pPhysicsController1 && !GetSGNode()->GetSGParent()) { // don't update physic controller if the object is a child: // 1) the transformation will not be right // 2) in this case, the physic controller is necessarily a static object // that is updated from the normal kinematic synchronization m_pPhysicsController1->setPosition(trans); } GetSGNode()->SetLocalPosition(trans); } void KX_GameObject::NodeSetLocalOrientation(const MT_Matrix3x3& rot) { // check on valid node in case a python controller holds a reference to a deleted object if (!GetSGNode()) return; if (m_pPhysicsController1 && !GetSGNode()->GetSGParent()) { // see note above m_pPhysicsController1->setOrientation(rot); } GetSGNode()->SetLocalOrientation(rot); } void KX_GameObject::NodeSetGlobalOrientation(const MT_Matrix3x3& rot) { // check on valid node in case a python controller holds a reference to a deleted object if (!GetSGNode()) return; if (GetSGNode()->GetSGParent()) GetSGNode()->SetLocalOrientation(GetSGNode()->GetSGParent()->GetWorldOrientation().inverse()*rot); else NodeSetLocalOrientation(rot); } void KX_GameObject::NodeSetLocalScale(const MT_Vector3& scale) { // check on valid node in case a python controller holds a reference to a deleted object if (!GetSGNode()) return; if (m_pPhysicsController1 && !GetSGNode()->GetSGParent()) { // see note above m_pPhysicsController1->setScaling(scale); } GetSGNode()->SetLocalScale(scale); } void KX_GameObject::NodeSetRelativeScale(const MT_Vector3& scale) { if (GetSGNode()) { GetSGNode()->RelativeScale(scale); if (m_pPhysicsController1 && (!GetSGNode()->GetSGParent())) { // see note above // we can use the local scale: it's the same thing for a root object // and the world scale is not yet updated MT_Vector3 newscale = GetSGNode()->GetLocalScale(); m_pPhysicsController1->setScaling(newscale); } } } void KX_GameObject::NodeSetWorldScale(const MT_Vector3& scale) { if (!GetSGNode()) return; SG_Node* parent = GetSGNode()->GetSGParent(); if (parent != NULL) { // Make sure the objects have some scale MT_Vector3 p_scale = parent->GetWorldScaling(); if (fabs(p_scale[0]) < FLT_EPSILON || fabs(p_scale[1]) < FLT_EPSILON || fabs(p_scale[2]) < FLT_EPSILON) { return; } p_scale[0] = 1/p_scale[0]; p_scale[1] = 1/p_scale[1]; p_scale[2] = 1/p_scale[2]; NodeSetLocalScale(scale * p_scale); } else { NodeSetLocalScale(scale); } } void KX_GameObject::NodeSetWorldPosition(const MT_Point3& trans) { if (!GetSGNode()) return; SG_Node* parent = GetSGNode()->GetSGParent(); if (parent != NULL) { // Make sure the objects have some scale MT_Vector3 scale = parent->GetWorldScaling(); if (fabs(scale[0]) < FLT_EPSILON || fabs(scale[1]) < FLT_EPSILON || fabs(scale[2]) < FLT_EPSILON) { return; } scale[0] = 1.0/scale[0]; scale[1] = 1.0/scale[1]; scale[2] = 1.0/scale[2]; MT_Matrix3x3 invori = parent->GetWorldOrientation().inverse(); MT_Vector3 newpos = invori*(trans-parent->GetWorldPosition())*scale; NodeSetLocalPosition(MT_Point3(newpos[0],newpos[1],newpos[2])); } else { NodeSetLocalPosition(trans); } } void KX_GameObject::NodeUpdateGS(double time) { if (GetSGNode()) GetSGNode()->UpdateWorldData(time); } const MT_Matrix3x3& KX_GameObject::NodeGetWorldOrientation() const { // check on valid node in case a python controller holds a reference to a deleted object if (!GetSGNode()) return dummy_orientation; return GetSGNode()->GetWorldOrientation(); } const MT_Matrix3x3& KX_GameObject::NodeGetLocalOrientation() const { // check on valid node in case a python controller holds a reference to a deleted object if (!GetSGNode()) return dummy_orientation; return GetSGNode()->GetLocalOrientation(); } const MT_Vector3& KX_GameObject::NodeGetWorldScaling() const { // check on valid node in case a python controller holds a reference to a deleted object if (!GetSGNode()) return dummy_scaling; return GetSGNode()->GetWorldScaling(); } const MT_Vector3& KX_GameObject::NodeGetLocalScaling() const { // check on valid node in case a python controller holds a reference to a deleted object if (!GetSGNode()) return dummy_scaling; return GetSGNode()->GetLocalScale(); } const MT_Point3& KX_GameObject::NodeGetWorldPosition() const { // check on valid node in case a python controller holds a reference to a deleted object if (GetSGNode()) return GetSGNode()->GetWorldPosition(); else return dummy_point; } const MT_Point3& KX_GameObject::NodeGetLocalPosition() const { // check on valid node in case a python controller holds a reference to a deleted object if (GetSGNode()) return GetSGNode()->GetLocalPosition(); else return dummy_point; } /* Suspend/ resume: for the dynamic behavior, there is a simple * method. For the residual motion, there is not. I wonder what the * correct solution is for Sumo. Remove from the motion-update tree? * * So far, only switch the physics and logic. * */ void KX_GameObject::Resume(void) { if (m_suspended) { SCA_IObject::Resume(); if(GetPhysicsController()) GetPhysicsController()->RestoreDynamics(); m_suspended = false; } } void KX_GameObject::Suspend() { if ((!m_ignore_activity_culling) && (!m_suspended)) { SCA_IObject::Suspend(); if(GetPhysicsController()) GetPhysicsController()->SuspendDynamics(); m_suspended = true; } } static void walk_children(SG_Node* node, CListValue* list, bool recursive) { if (!node) return; NodeList& children = node->GetSGChildren(); for (NodeList::iterator childit = children.begin();!(childit==children.end());++childit) { SG_Node* childnode = (*childit); CValue* childobj = (CValue*)childnode->GetSGClientObject(); if (childobj != NULL) // This is a GameObject { // add to the list list->Add(childobj->AddRef()); } // if the childobj is NULL then this may be an inverse parent link // so a non recursive search should still look down this node. if (recursive || childobj==NULL) { walk_children(childnode, list, recursive); } } } CListValue* KX_GameObject::GetChildren() { CListValue* list = new CListValue(); walk_children(GetSGNode(), list, 0); /* GetSGNode() is always valid or it would have raised an exception before this */ return list; } CListValue* KX_GameObject::GetChildrenRecursive() { CListValue* list = new CListValue(); walk_children(GetSGNode(), list, 1); return list; } /* --------------------------------------------------------------------- * Some stuff taken from the header * --------------------------------------------------------------------- */ void KX_GameObject::Relink(CTR_Map *map_parameter) { // we will relink the sensors and actuators that use object references // if the object is part of the replicated hierarchy, use the new // object reference instead SCA_SensorList& sensorlist = GetSensors(); SCA_SensorList::iterator sit; for (sit=sensorlist.begin(); sit != sensorlist.end(); sit++) { (*sit)->Relink(map_parameter); } SCA_ActuatorList& actuatorlist = GetActuators(); SCA_ActuatorList::iterator ait; for (ait=actuatorlist.begin(); ait != actuatorlist.end(); ait++) { (*ait)->Relink(map_parameter); } } #ifdef USE_MATHUTILS /* These require an SGNode */ #define MATHUTILS_VEC_CB_POS_LOCAL 1 #define MATHUTILS_VEC_CB_POS_GLOBAL 2 #define MATHUTILS_VEC_CB_SCALE_LOCAL 3 #define MATHUTILS_VEC_CB_SCALE_GLOBAL 4 #define MATHUTILS_VEC_CB_INERTIA_LOCAL 5 #define MATHUTILS_VEC_CB_OBJECT_COLOR 6 #define MATHUTILS_VEC_CB_LINVEL_LOCAL 7 #define MATHUTILS_VEC_CB_LINVEL_GLOBAL 8 #define MATHUTILS_VEC_CB_ANGVEL_LOCAL 9 #define MATHUTILS_VEC_CB_ANGVEL_GLOBAL 10 static int mathutils_kxgameob_vector_cb_index= -1; /* index for our callbacks */ static int mathutils_kxgameob_generic_check(BaseMathObject *bmo) { KX_GameObject* self= static_castBGE_PROXY_REF(bmo->cb_user); if(self==NULL) return -1; return 0; } static int mathutils_kxgameob_vector_get(BaseMathObject *bmo, int subtype) { KX_GameObject* self= static_castBGE_PROXY_REF(bmo->cb_user); if(self==NULL) return -1; #define PHYS_ERR(attr) PyErr_SetString(PyExc_AttributeError, "KX_GameObject." attr ", is missing a physics controller") switch(subtype) { case MATHUTILS_VEC_CB_POS_LOCAL: self->NodeGetLocalPosition().getValue(bmo->data); break; case MATHUTILS_VEC_CB_POS_GLOBAL: self->NodeGetWorldPosition().getValue(bmo->data); break; case MATHUTILS_VEC_CB_SCALE_LOCAL: self->NodeGetLocalScaling().getValue(bmo->data); break; case MATHUTILS_VEC_CB_SCALE_GLOBAL: self->NodeGetWorldScaling().getValue(bmo->data); break; case MATHUTILS_VEC_CB_INERTIA_LOCAL: if(!self->GetPhysicsController()) return PHYS_ERR("localInertia"), -1; self->GetPhysicsController()->GetLocalInertia().getValue(bmo->data); break; case MATHUTILS_VEC_CB_OBJECT_COLOR: self->GetObjectColor().getValue(bmo->data); break; case MATHUTILS_VEC_CB_LINVEL_LOCAL: if(!self->GetPhysicsController()) return PHYS_ERR("localLinearVelocity"), -1; self->GetLinearVelocity(true).getValue(bmo->data); break; case MATHUTILS_VEC_CB_LINVEL_GLOBAL: if(!self->GetPhysicsController()) return PHYS_ERR("worldLinearVelocity"), -1; self->GetLinearVelocity(false).getValue(bmo->data); break; case MATHUTILS_VEC_CB_ANGVEL_LOCAL: if(!self->GetPhysicsController()) return PHYS_ERR("localLinearVelocity"), -1; self->GetAngularVelocity(true).getValue(bmo->data); break; case MATHUTILS_VEC_CB_ANGVEL_GLOBAL: if(!self->GetPhysicsController()) return PHYS_ERR("worldLinearVelocity"), -1; self->GetAngularVelocity(false).getValue(bmo->data); break; } #undef PHYS_ERR return 0; } static int mathutils_kxgameob_vector_set(BaseMathObject *bmo, int subtype) { KX_GameObject* self= static_castBGE_PROXY_REF(bmo->cb_user); if(self==NULL) return -1; switch(subtype) { case MATHUTILS_VEC_CB_POS_LOCAL: self->NodeSetLocalPosition(MT_Point3(bmo->data)); self->NodeUpdateGS(0.f); break; case MATHUTILS_VEC_CB_POS_GLOBAL: self->NodeSetWorldPosition(MT_Point3(bmo->data)); self->NodeUpdateGS(0.f); break; case MATHUTILS_VEC_CB_SCALE_LOCAL: self->NodeSetLocalScale(MT_Point3(bmo->data)); self->NodeUpdateGS(0.f); break; case MATHUTILS_VEC_CB_SCALE_GLOBAL: PyErr_SetString(PyExc_AttributeError, "KX_GameObject.worldScale is read-only"); return -1; case MATHUTILS_VEC_CB_INERTIA_LOCAL: /* read only */ break; case MATHUTILS_VEC_CB_OBJECT_COLOR: self->SetObjectColor(MT_Vector4(bmo->data)); break; case MATHUTILS_VEC_CB_LINVEL_LOCAL: self->setLinearVelocity(MT_Point3(bmo->data),true); break; case MATHUTILS_VEC_CB_LINVEL_GLOBAL: self->setLinearVelocity(MT_Point3(bmo->data),false); break; case MATHUTILS_VEC_CB_ANGVEL_LOCAL: self->setAngularVelocity(MT_Point3(bmo->data),true); break; case MATHUTILS_VEC_CB_ANGVEL_GLOBAL: self->setAngularVelocity(MT_Point3(bmo->data),false); break; } return 0; } static int mathutils_kxgameob_vector_get_index(BaseMathObject *bmo, int subtype, int index) { /* lazy, avoid repeteing the case statement */ if(mathutils_kxgameob_vector_get(bmo, subtype) == -1) return -1; return 0; } static int mathutils_kxgameob_vector_set_index(BaseMathObject *bmo, int subtype, int index) { float f= bmo->data[index]; /* lazy, avoid repeteing the case statement */ if(mathutils_kxgameob_vector_get(bmo, subtype) == -1) return -1; bmo->data[index]= f; return mathutils_kxgameob_vector_set(bmo, subtype); } Mathutils_Callback mathutils_kxgameob_vector_cb = { mathutils_kxgameob_generic_check, mathutils_kxgameob_vector_get, mathutils_kxgameob_vector_set, mathutils_kxgameob_vector_get_index, mathutils_kxgameob_vector_set_index }; /* Matrix */ #define MATHUTILS_MAT_CB_ORI_LOCAL 1 #define MATHUTILS_MAT_CB_ORI_GLOBAL 2 static int mathutils_kxgameob_matrix_cb_index= -1; /* index for our callbacks */ static int mathutils_kxgameob_matrix_get(BaseMathObject *bmo, int subtype) { KX_GameObject* self= static_castBGE_PROXY_REF(bmo->cb_user); if(self==NULL) return -1; switch(subtype) { case MATHUTILS_MAT_CB_ORI_LOCAL: self->NodeGetLocalOrientation().getValue3x3(bmo->data); break; case MATHUTILS_MAT_CB_ORI_GLOBAL: self->NodeGetWorldOrientation().getValue3x3(bmo->data); break; } return 0; } static int mathutils_kxgameob_matrix_set(BaseMathObject *bmo, int subtype) { KX_GameObject* self= static_castBGE_PROXY_REF(bmo->cb_user); if(self==NULL) return -1; MT_Matrix3x3 mat3x3; switch(subtype) { case MATHUTILS_MAT_CB_ORI_LOCAL: mat3x3.setValue3x3(bmo->data); self->NodeSetLocalOrientation(mat3x3); self->NodeUpdateGS(0.f); break; case MATHUTILS_MAT_CB_ORI_GLOBAL: mat3x3.setValue3x3(bmo->data); self->NodeSetLocalOrientation(mat3x3); self->NodeUpdateGS(0.f); break; } return 0; } Mathutils_Callback mathutils_kxgameob_matrix_cb = { mathutils_kxgameob_generic_check, mathutils_kxgameob_matrix_get, mathutils_kxgameob_matrix_set, NULL, NULL }; void KX_GameObject_Mathutils_Callback_Init(void) { // register mathutils callbacks, ok to run more then once. mathutils_kxgameob_vector_cb_index= Mathutils_RegisterCallback(&mathutils_kxgameob_vector_cb); mathutils_kxgameob_matrix_cb_index= Mathutils_RegisterCallback(&mathutils_kxgameob_matrix_cb); } #endif // USE_MATHUTILS #ifdef WITH_PYTHON /* ------- python stuff ---------------------------------------------------*/ PyMethodDef KX_GameObject::Methods[] = { {"applyForce", (PyCFunction) KX_GameObject::sPyApplyForce, METH_VARARGS}, {"applyTorque", (PyCFunction) KX_GameObject::sPyApplyTorque, METH_VARARGS}, {"applyRotation", (PyCFunction) KX_GameObject::sPyApplyRotation, METH_VARARGS}, {"applyMovement", (PyCFunction) KX_GameObject::sPyApplyMovement, METH_VARARGS}, {"getLinearVelocity", (PyCFunction) KX_GameObject::sPyGetLinearVelocity, METH_VARARGS}, {"setLinearVelocity", (PyCFunction) KX_GameObject::sPySetLinearVelocity, METH_VARARGS}, {"getAngularVelocity", (PyCFunction) KX_GameObject::sPyGetAngularVelocity, METH_VARARGS}, {"setAngularVelocity", (PyCFunction) KX_GameObject::sPySetAngularVelocity, METH_VARARGS}, {"getVelocity", (PyCFunction) KX_GameObject::sPyGetVelocity, METH_VARARGS}, {"getReactionForce", (PyCFunction) KX_GameObject::sPyGetReactionForce, METH_NOARGS}, {"alignAxisToVect",(PyCFunction) KX_GameObject::sPyAlignAxisToVect, METH_VARARGS}, {"getAxisVect",(PyCFunction) KX_GameObject::sPyGetAxisVect, METH_O}, {"suspendDynamics", (PyCFunction)KX_GameObject::sPySuspendDynamics,METH_NOARGS}, {"restoreDynamics", (PyCFunction)KX_GameObject::sPyRestoreDynamics,METH_NOARGS}, {"enableRigidBody", (PyCFunction)KX_GameObject::sPyEnableRigidBody,METH_NOARGS}, {"disableRigidBody", (PyCFunction)KX_GameObject::sPyDisableRigidBody,METH_NOARGS}, {"applyImpulse", (PyCFunction) KX_GameObject::sPyApplyImpulse, METH_VARARGS}, {"setCollisionMargin", (PyCFunction) KX_GameObject::sPySetCollisionMargin, METH_O}, {"setParent", (PyCFunction)KX_GameObject::sPySetParent,METH_VARARGS}, {"setVisible",(PyCFunction) KX_GameObject::sPySetVisible, METH_VARARGS}, {"setOcclusion",(PyCFunction) KX_GameObject::sPySetOcclusion, METH_VARARGS}, {"removeParent", (PyCFunction)KX_GameObject::sPyRemoveParent,METH_NOARGS}, {"getPhysicsId", (PyCFunction)KX_GameObject::sPyGetPhysicsId,METH_NOARGS}, {"getPropertyNames", (PyCFunction)KX_GameObject::sPyGetPropertyNames,METH_NOARGS}, {"replaceMesh",(PyCFunction) KX_GameObject::sPyReplaceMesh, METH_VARARGS}, {"endObject",(PyCFunction) KX_GameObject::sPyEndObject, METH_NOARGS}, {"reinstancePhysicsMesh", (PyCFunction)KX_GameObject::sPyReinstancePhysicsMesh,METH_VARARGS}, KX_PYMETHODTABLE(KX_GameObject, rayCastTo), KX_PYMETHODTABLE(KX_GameObject, rayCast), KX_PYMETHODTABLE_O(KX_GameObject, getDistanceTo), KX_PYMETHODTABLE_O(KX_GameObject, getVectTo), KX_PYMETHODTABLE(KX_GameObject, sendMessage), KX_PYMETHODTABLE_KEYWORDS(KX_GameObject, playAction), KX_PYMETHODTABLE(KX_GameObject, stopAction), KX_PYMETHODTABLE(KX_GameObject, getActionFrame), KX_PYMETHODTABLE(KX_GameObject, setActionFrame), KX_PYMETHODTABLE(KX_GameObject, isPlayingAction), // dict style access for props {"get",(PyCFunction) KX_GameObject::sPyget, METH_VARARGS}, {NULL,NULL} //Sentinel }; PyAttributeDef KX_GameObject::Attributes[] = { KX_PYATTRIBUTE_RO_FUNCTION("name", KX_GameObject, pyattr_get_name), KX_PYATTRIBUTE_RO_FUNCTION("parent", KX_GameObject, pyattr_get_parent), KX_PYATTRIBUTE_RO_FUNCTION("life", KX_GameObject, pyattr_get_life), KX_PYATTRIBUTE_RW_FUNCTION("mass", KX_GameObject, pyattr_get_mass, pyattr_set_mass), KX_PYATTRIBUTE_RW_FUNCTION("linVelocityMin", KX_GameObject, pyattr_get_lin_vel_min, pyattr_set_lin_vel_min), KX_PYATTRIBUTE_RW_FUNCTION("linVelocityMax", KX_GameObject, pyattr_get_lin_vel_max, pyattr_set_lin_vel_max), KX_PYATTRIBUTE_RW_FUNCTION("visible", KX_GameObject, pyattr_get_visible, pyattr_set_visible), KX_PYATTRIBUTE_BOOL_RW ("occlusion", KX_GameObject, m_bOccluder), KX_PYATTRIBUTE_RW_FUNCTION("position", KX_GameObject, pyattr_get_worldPosition, pyattr_set_localPosition), KX_PYATTRIBUTE_RO_FUNCTION("localInertia", KX_GameObject, pyattr_get_localInertia), KX_PYATTRIBUTE_RW_FUNCTION("orientation",KX_GameObject,pyattr_get_worldOrientation,pyattr_set_localOrientation), KX_PYATTRIBUTE_RW_FUNCTION("scaling", KX_GameObject, pyattr_get_worldScaling, pyattr_set_localScaling), KX_PYATTRIBUTE_RW_FUNCTION("timeOffset",KX_GameObject, pyattr_get_timeOffset,pyattr_set_timeOffset), KX_PYATTRIBUTE_RW_FUNCTION("state", KX_GameObject, pyattr_get_state, pyattr_set_state), KX_PYATTRIBUTE_RO_FUNCTION("meshes", KX_GameObject, pyattr_get_meshes), KX_PYATTRIBUTE_RW_FUNCTION("localOrientation",KX_GameObject,pyattr_get_localOrientation,pyattr_set_localOrientation), KX_PYATTRIBUTE_RW_FUNCTION("worldOrientation",KX_GameObject,pyattr_get_worldOrientation,pyattr_set_worldOrientation), KX_PYATTRIBUTE_RW_FUNCTION("localPosition", KX_GameObject, pyattr_get_localPosition, pyattr_set_localPosition), KX_PYATTRIBUTE_RW_FUNCTION("worldPosition", KX_GameObject, pyattr_get_worldPosition, pyattr_set_worldPosition), KX_PYATTRIBUTE_RW_FUNCTION("localScale", KX_GameObject, pyattr_get_localScaling, pyattr_set_localScaling), KX_PYATTRIBUTE_RW_FUNCTION("worldScale", KX_GameObject, pyattr_get_worldScaling, pyattr_set_worldScaling), KX_PYATTRIBUTE_RW_FUNCTION("localTransform", KX_GameObject, pyattr_get_localTransform, pyattr_set_localTransform), KX_PYATTRIBUTE_RW_FUNCTION("worldTransform", KX_GameObject, pyattr_get_worldTransform, pyattr_set_worldTransform), KX_PYATTRIBUTE_RW_FUNCTION("linearVelocity", KX_GameObject, pyattr_get_localLinearVelocity, pyattr_set_worldLinearVelocity), KX_PYATTRIBUTE_RW_FUNCTION("localLinearVelocity", KX_GameObject, pyattr_get_localLinearVelocity, pyattr_set_localLinearVelocity), KX_PYATTRIBUTE_RW_FUNCTION("worldLinearVelocity", KX_GameObject, pyattr_get_worldLinearVelocity, pyattr_set_worldLinearVelocity), KX_PYATTRIBUTE_RW_FUNCTION("angularVelocity", KX_GameObject, pyattr_get_localAngularVelocity, pyattr_set_worldAngularVelocity), KX_PYATTRIBUTE_RW_FUNCTION("localAngularVelocity", KX_GameObject, pyattr_get_localAngularVelocity, pyattr_set_localAngularVelocity), KX_PYATTRIBUTE_RW_FUNCTION("worldAngularVelocity", KX_GameObject, pyattr_get_worldAngularVelocity, pyattr_set_worldAngularVelocity), KX_PYATTRIBUTE_RO_FUNCTION("children", KX_GameObject, pyattr_get_children), KX_PYATTRIBUTE_RO_FUNCTION("childrenRecursive", KX_GameObject, pyattr_get_children_recursive), KX_PYATTRIBUTE_RO_FUNCTION("attrDict", KX_GameObject, pyattr_get_attrDict), KX_PYATTRIBUTE_RW_FUNCTION("color", KX_GameObject, pyattr_get_obcolor, pyattr_set_obcolor), /* Experemental, dont rely on these yet */ KX_PYATTRIBUTE_RO_FUNCTION("sensors", KX_GameObject, pyattr_get_sensors), KX_PYATTRIBUTE_RO_FUNCTION("controllers", KX_GameObject, pyattr_get_controllers), KX_PYATTRIBUTE_RO_FUNCTION("actuators", KX_GameObject, pyattr_get_actuators), {NULL} //Sentinel }; PyObject* KX_GameObject::PyReplaceMesh(PyObject* args) { KX_Scene *scene = KX_GetActiveScene(); PyObject *value; int use_gfx= 1, use_phys= 0; RAS_MeshObject *new_mesh; if (!PyArg_ParseTuple(args,"O|ii:replaceMesh", &value, &use_gfx, &use_phys)) return NULL; if (!ConvertPythonToMesh(value, &new_mesh, false, "gameOb.replaceMesh(value): KX_GameObject")) return NULL; scene->ReplaceMesh(this, new_mesh, (bool)use_gfx, (bool)use_phys); Py_RETURN_NONE; } PyObject* KX_GameObject::PyEndObject() { KX_Scene *scene = KX_GetActiveScene(); scene->DelayedRemoveObject(this); Py_RETURN_NONE; } PyObject* KX_GameObject::PyReinstancePhysicsMesh(PyObject* args) { KX_GameObject *gameobj= NULL; RAS_MeshObject *mesh= NULL; PyObject *gameobj_py= NULL; PyObject *mesh_py= NULL; if ( !PyArg_ParseTuple(args,"|OO:reinstancePhysicsMesh",&gameobj_py, &mesh_py) || (gameobj_py && !ConvertPythonToGameObject(gameobj_py, &gameobj, true, "gameOb.reinstancePhysicsMesh(obj, mesh): KX_GameObject")) || (mesh_py && !ConvertPythonToMesh(mesh_py, &mesh, true, "gameOb.reinstancePhysicsMesh(obj, mesh): KX_GameObject")) ) { return NULL; } #ifdef USE_BULLET /* gameobj and mesh can be NULL */ if(KX_ReInstanceBulletShapeFromMesh(this, gameobj, mesh)) Py_RETURN_TRUE; #endif Py_RETURN_FALSE; } static PyObject *Map_GetItem(PyObject *self_v, PyObject *item) { KX_GameObject* self= static_castBGE_PROXY_REF(self_v); const char *attr_str= _PyUnicode_AsString(item); CValue* resultattr; PyObject* pyconvert; if (self==NULL) { PyErr_SetString(PyExc_SystemError, "val = gameOb[key]: KX_GameObject, "BGE_PROXY_ERROR_MSG); return NULL; } /* first see if the attributes a string and try get the cvalue attribute */ if(attr_str && (resultattr=self->GetProperty(attr_str))) { pyconvert = resultattr->ConvertValueToPython(); return pyconvert ? pyconvert:resultattr->GetProxy(); } /* no CValue attribute, try get the python only m_attr_dict attribute */ else if (self->m_attr_dict && (pyconvert=PyDict_GetItem(self->m_attr_dict, item))) { if (attr_str) PyErr_Clear(); Py_INCREF(pyconvert); return pyconvert; } else { if(attr_str) PyErr_Format(PyExc_KeyError, "value = gameOb[key]: KX_GameObject, key \"%s\" does not exist", attr_str); else PyErr_SetString(PyExc_KeyError, "value = gameOb[key]: KX_GameObject, key does not exist"); return NULL; } } static int Map_SetItem(PyObject *self_v, PyObject *key, PyObject *val) { KX_GameObject* self= static_castBGE_PROXY_REF(self_v); const char *attr_str= _PyUnicode_AsString(key); if(attr_str==NULL) PyErr_Clear(); if (self==NULL) { PyErr_SetString(PyExc_SystemError, "gameOb[key] = value: KX_GameObject, "BGE_PROXY_ERROR_MSG); return -1; } if (val==NULL) { /* del ob["key"] */ int del= 0; /* try remove both just in case */ if(attr_str) del |= (self->RemoveProperty(attr_str)==true) ? 1:0; if(self->m_attr_dict) del |= (PyDict_DelItem(self->m_attr_dict, key)==0) ? 1:0; if (del==0) { if(attr_str) PyErr_Format(PyExc_KeyError, "gameOb[key] = value: KX_GameObject, key \"%s\" could not be set", attr_str); else PyErr_SetString(PyExc_KeyError, "del gameOb[key]: KX_GameObject, key could not be deleted"); return -1; } else if (self->m_attr_dict) { PyErr_Clear(); /* PyDict_DelItem sets an error when it fails */ } } else { /* ob["key"] = value */ int set= 0; /* as CValue */ if(attr_str && PyObject_TypeCheck(val, &PyObjectPlus::Type)==0) /* dont allow GameObjects for eg to be assigned to CValue props */ { CValue* vallie = self->ConvertPythonToValue(val, ""); /* error unused */ if(vallie) { CValue* oldprop = self->GetProperty(attr_str); if (oldprop) oldprop->SetValue(vallie); else self->SetProperty(attr_str, vallie); vallie->Release(); set= 1; /* try remove dict value to avoid double ups */ if (self->m_attr_dict){ if (PyDict_DelItem(self->m_attr_dict, key) != 0) PyErr_Clear(); } } else { PyErr_Clear(); } } if(set==0) { if (self->m_attr_dict==NULL) /* lazy init */ self->m_attr_dict= PyDict_New(); if(PyDict_SetItem(self->m_attr_dict, key, val)==0) { if(attr_str) self->RemoveProperty(attr_str); /* overwrite the CValue if it exists */ set= 1; } else { if(attr_str) PyErr_Format(PyExc_KeyError, "gameOb[key] = value: KX_GameObject, key \"%s\" not be added to internal dictionary", attr_str); else PyErr_SetString(PyExc_KeyError, "gameOb[key] = value: KX_GameObject, key not be added to internal dictionary"); } } if(set==0) return -1; /* pythons error value */ } return 0; /* success */ } static int Seq_Contains(PyObject *self_v, PyObject *value) { KX_GameObject* self= static_castBGE_PROXY_REF(self_v); if (self==NULL) { PyErr_SetString(PyExc_SystemError, "val in gameOb: KX_GameObject, "BGE_PROXY_ERROR_MSG); return -1; } if(PyUnicode_Check(value) && self->GetProperty(_PyUnicode_AsString(value))) return 1; if (self->m_attr_dict && PyDict_GetItem(self->m_attr_dict, value)) return 1; return 0; } PyMappingMethods KX_GameObject::Mapping = { (lenfunc)NULL , /*inquiry mp_length */ (binaryfunc)Map_GetItem, /*binaryfunc mp_subscript */ (objobjargproc)Map_SetItem, /*objobjargproc mp_ass_subscript */ }; PySequenceMethods KX_GameObject::Sequence = { NULL, /* Cant set the len otherwise it can evaluate as false */ NULL, /* sq_concat */ NULL, /* sq_repeat */ NULL, /* sq_item */ NULL, /* sq_slice */ NULL, /* sq_ass_item */ NULL, /* sq_ass_slice */ (objobjproc)Seq_Contains, /* sq_contains */ (binaryfunc) NULL, /* sq_inplace_concat */ (ssizeargfunc) NULL, /* sq_inplace_repeat */ }; PyTypeObject KX_GameObject::Type = { PyVarObject_HEAD_INIT(NULL, 0) "KX_GameObject", sizeof(PyObjectPlus_Proxy), 0, py_base_dealloc, 0, 0, 0, 0, py_base_repr, 0, &Sequence, &Mapping, 0,0,0, NULL, NULL, 0, Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, 0,0,0,0,0,0,0, Methods, 0, 0, &SCA_IObject::Type, 0,0,0,0,0,0, py_base_new }; PyObject* KX_GameObject::pyattr_get_name(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_GameObject* self= static_cast(self_v); return PyUnicode_From_STR_String(self->GetName()); } PyObject* KX_GameObject::pyattr_get_parent(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_GameObject* self= static_cast(self_v); KX_GameObject* parent = self->GetParent(); if (parent) { parent->Release(); /* self->GetParent() AddRef's */ return parent->GetProxy(); } Py_RETURN_NONE; } PyObject* KX_GameObject::pyattr_get_life(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_GameObject* self= static_cast(self_v); CValue *life = self->GetProperty("::timebomb"); if (life) // this convert the timebomb seconds to frames, hard coded 50.0 (assuming 50fps) // value hardcoded in KX_Scene::AddReplicaObject() return PyFloat_FromDouble(life->GetNumber() * 50.0); else Py_RETURN_NONE; } PyObject* KX_GameObject::pyattr_get_mass(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_GameObject* self= static_cast(self_v); KX_IPhysicsController *spc = self->GetPhysicsController(); return PyFloat_FromDouble(spc ? spc->GetMass() : 0.0f); } int KX_GameObject::pyattr_set_mass(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); KX_IPhysicsController *spc = self->GetPhysicsController(); MT_Scalar val = PyFloat_AsDouble(value); if (val < 0.0f) { /* also accounts for non float */ PyErr_SetString(PyExc_AttributeError, "gameOb.mass = float: KX_GameObject, expected a float zero or above"); return PY_SET_ATTR_FAIL; } if (spc) spc->SetMass(val); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_lin_vel_min(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_GameObject* self= static_cast(self_v); KX_IPhysicsController *spc = self->GetPhysicsController(); return PyFloat_FromDouble(spc ? spc->GetLinVelocityMin() : 0.0f); } int KX_GameObject::pyattr_set_lin_vel_min(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); KX_IPhysicsController *spc = self->GetPhysicsController(); MT_Scalar val = PyFloat_AsDouble(value); if (val < 0.0f) { /* also accounts for non float */ PyErr_SetString(PyExc_AttributeError, "gameOb.linVelocityMin = float: KX_GameObject, expected a float zero or above"); return PY_SET_ATTR_FAIL; } if (spc) spc->SetLinVelocityMin(val); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_lin_vel_max(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_GameObject* self= static_cast(self_v); KX_IPhysicsController *spc = self->GetPhysicsController(); return PyFloat_FromDouble(spc ? spc->GetLinVelocityMax() : 0.0f); } int KX_GameObject::pyattr_set_lin_vel_max(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); KX_IPhysicsController *spc = self->GetPhysicsController(); MT_Scalar val = PyFloat_AsDouble(value); if (val < 0.0f) { /* also accounts for non float */ PyErr_SetString(PyExc_AttributeError, "gameOb.linVelocityMax = float: KX_GameObject, expected a float zero or above"); return PY_SET_ATTR_FAIL; } if (spc) spc->SetLinVelocityMax(val); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_visible(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_GameObject* self= static_cast(self_v); return PyBool_FromLong(self->GetVisible()); } int KX_GameObject::pyattr_set_visible(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); int param = PyObject_IsTrue( value ); if (param == -1) { PyErr_SetString(PyExc_AttributeError, "gameOb.visible = bool: KX_GameObject, expected True or False"); return PY_SET_ATTR_FAIL; } self->SetVisible(param, false); self->UpdateBuckets(false); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_worldPosition(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { #ifdef USE_MATHUTILS return Vector_CreatePyObject_cb(BGE_PROXY_FROM_REF(self_v), 3, mathutils_kxgameob_vector_cb_index, MATHUTILS_VEC_CB_POS_GLOBAL); #else KX_GameObject* self= static_cast(self_v); return PyObjectFrom(self->NodeGetWorldPosition()); #endif } int KX_GameObject::pyattr_set_worldPosition(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); MT_Point3 pos; if (!PyVecTo(value, pos)) return PY_SET_ATTR_FAIL; self->NodeSetWorldPosition(pos); self->NodeUpdateGS(0.f); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_localPosition(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { #ifdef USE_MATHUTILS return Vector_CreatePyObject_cb(BGE_PROXY_FROM_REF(self_v), 3, mathutils_kxgameob_vector_cb_index, MATHUTILS_VEC_CB_POS_LOCAL); #else KX_GameObject* self= static_cast(self_v); return PyObjectFrom(self->NodeGetLocalPosition()); #endif } int KX_GameObject::pyattr_set_localPosition(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); MT_Point3 pos; if (!PyVecTo(value, pos)) return PY_SET_ATTR_FAIL; self->NodeSetLocalPosition(pos); self->NodeUpdateGS(0.f); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_localInertia(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { #ifdef USE_MATHUTILS return Vector_CreatePyObject_cb(BGE_PROXY_FROM_REF(self_v), 3, mathutils_kxgameob_vector_cb_index, MATHUTILS_VEC_CB_INERTIA_LOCAL); #else KX_GameObject* self= static_cast(self_v); if (self->GetPhysicsController()) return PyObjectFrom(self->GetPhysicsController()->GetLocalInertia()); return Py_BuildValue("fff", 0.0f, 0.0f, 0.0f); #endif } PyObject* KX_GameObject::pyattr_get_worldOrientation(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { #ifdef USE_MATHUTILS return Matrix_CreatePyObject_cb(BGE_PROXY_FROM_REF(self_v), 3, 3, mathutils_kxgameob_matrix_cb_index, MATHUTILS_MAT_CB_ORI_GLOBAL); #else KX_GameObject* self= static_cast(self_v); return PyObjectFrom(self->NodeGetWorldOrientation()); #endif } int KX_GameObject::pyattr_set_worldOrientation(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); /* if value is not a sequence PyOrientationTo makes an error */ MT_Matrix3x3 rot; if (!PyOrientationTo(value, rot, "gameOb.worldOrientation = sequence: KX_GameObject, ")) return PY_SET_ATTR_FAIL; self->NodeSetGlobalOrientation(rot); self->NodeUpdateGS(0.f); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_localOrientation(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { #ifdef USE_MATHUTILS return Matrix_CreatePyObject_cb(BGE_PROXY_FROM_REF(self_v), 3, 3, mathutils_kxgameob_matrix_cb_index, MATHUTILS_MAT_CB_ORI_LOCAL); #else KX_GameObject* self= static_cast(self_v); return PyObjectFrom(self->NodeGetLocalOrientation()); #endif } int KX_GameObject::pyattr_set_localOrientation(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); /* if value is not a sequence PyOrientationTo makes an error */ MT_Matrix3x3 rot; if (!PyOrientationTo(value, rot, "gameOb.localOrientation = sequence: KX_GameObject, ")) return PY_SET_ATTR_FAIL; self->NodeSetLocalOrientation(rot); self->NodeUpdateGS(0.f); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_worldScaling(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { #ifdef USE_MATHUTILS return Vector_CreatePyObject_cb(BGE_PROXY_FROM_REF(self_v), 3, mathutils_kxgameob_vector_cb_index, MATHUTILS_VEC_CB_SCALE_GLOBAL); #else KX_GameObject* self= static_cast(self_v); return PyObjectFrom(self->NodeGetWorldScaling()); #endif } int KX_GameObject::pyattr_set_worldScaling(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); MT_Vector3 scale; if (!PyVecTo(value, scale)) return PY_SET_ATTR_FAIL; self->NodeSetWorldScale(scale); self->NodeUpdateGS(0.f); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_localScaling(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { #ifdef USE_MATHUTILS return Vector_CreatePyObject_cb(BGE_PROXY_FROM_REF(self_v), 3, mathutils_kxgameob_vector_cb_index, MATHUTILS_VEC_CB_SCALE_LOCAL); #else KX_GameObject* self= static_cast(self_v); return PyObjectFrom(self->NodeGetLocalScaling()); #endif } int KX_GameObject::pyattr_set_localScaling(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); MT_Vector3 scale; if (!PyVecTo(value, scale)) return PY_SET_ATTR_FAIL; self->NodeSetLocalScale(scale); self->NodeUpdateGS(0.f); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_localTransform(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_GameObject* self = static_cast(self_v); double *mat = MT_CmMatrix4x4().getPointer(); MT_Transform trans; trans.setOrigin(self->GetSGNode()->GetLocalPosition()); trans.setBasis(self->GetSGNode()->GetLocalOrientation()); MT_Vector3 scaling = self->GetSGNode()->GetLocalScale(); trans.scale(scaling[0], scaling[1], scaling[2]); trans.getValue(mat); return PyObjectFrom(MT_Matrix4x4(mat)); } int KX_GameObject::pyattr_set_localTransform(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self = static_cast(self_v); MT_Matrix4x4 temp; if (!PyMatTo(value, temp)) return PY_SET_ATTR_FAIL; float transform[4][4]; float loc[3], size[3]; float rot[3][3]; MT_Matrix3x3 orientation; temp.getValue(*transform); mat4_to_loc_rot_size(loc, rot, size, transform); self->NodeSetLocalPosition(MT_Point3(loc)); //MT_Matrix3x3's constructor expects a 4x4 matrix orientation = MT_Matrix3x3(); orientation.setValue3x3(*rot); self->NodeSetLocalOrientation(orientation); self->NodeSetLocalScale(MT_Vector3(size)); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_worldTransform(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_GameObject* self = static_cast(self_v); return PyObjectFrom(MT_Matrix4x4(self->GetOpenGLMatrix())); } int KX_GameObject::pyattr_set_worldTransform(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self = static_cast(self_v); MT_Matrix4x4 temp; if (!PyMatTo(value, temp)) return PY_SET_ATTR_FAIL; float transform[4][4]; float loc[3], size[3]; float rot[3][3]; MT_Matrix3x3 orientation; temp.getValue(*transform); mat4_to_loc_rot_size(loc, rot, size, transform); self->NodeSetWorldPosition(MT_Point3(loc)); //MT_Matrix3x3's constructor expects a 4x4 matrix orientation = MT_Matrix3x3(); orientation.setValue3x3(*rot); self->NodeSetGlobalOrientation(orientation); self->NodeSetWorldScale(MT_Vector3(size)); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_worldLinearVelocity(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { #ifdef USE_MATHUTILS return Vector_CreatePyObject_cb(BGE_PROXY_FROM_REF(self_v), 3, mathutils_kxgameob_vector_cb_index, MATHUTILS_VEC_CB_LINVEL_GLOBAL); #else KX_GameObject* self= static_cast(self_v); return PyObjectFrom(GetLinearVelocity(false)); #endif } int KX_GameObject::pyattr_set_worldLinearVelocity(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); MT_Vector3 velocity; if (!PyVecTo(value, velocity)) return PY_SET_ATTR_FAIL; self->setLinearVelocity(velocity, false); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_localLinearVelocity(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { #ifdef USE_MATHUTILS return Vector_CreatePyObject_cb(BGE_PROXY_FROM_REF(self_v), 3, mathutils_kxgameob_vector_cb_index, MATHUTILS_VEC_CB_LINVEL_LOCAL); #else KX_GameObject* self= static_cast(self_v); return PyObjectFrom(GetLinearVelocity(true)); #endif } int KX_GameObject::pyattr_set_localLinearVelocity(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); MT_Vector3 velocity; if (!PyVecTo(value, velocity)) return PY_SET_ATTR_FAIL; self->setLinearVelocity(velocity, true); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_worldAngularVelocity(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { #ifdef USE_MATHUTILS return Vector_CreatePyObject_cb(BGE_PROXY_FROM_REF(self_v), 3, mathutils_kxgameob_vector_cb_index, MATHUTILS_VEC_CB_ANGVEL_GLOBAL); #else KX_GameObject* self= static_cast(self_v); return PyObjectFrom(GetAngularVelocity(false)); #endif } int KX_GameObject::pyattr_set_worldAngularVelocity(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); MT_Vector3 velocity; if (!PyVecTo(value, velocity)) return PY_SET_ATTR_FAIL; self->setAngularVelocity(velocity, false); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_localAngularVelocity(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { #ifdef USE_MATHUTILS return Vector_CreatePyObject_cb(BGE_PROXY_FROM_REF(self_v), 3, mathutils_kxgameob_vector_cb_index, MATHUTILS_VEC_CB_ANGVEL_LOCAL); #else KX_GameObject* self= static_cast(self_v); return PyObjectFrom(GetAngularVelocity(true)); #endif } int KX_GameObject::pyattr_set_localAngularVelocity(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); MT_Vector3 velocity; if (!PyVecTo(value, velocity)) return PY_SET_ATTR_FAIL; self->setAngularVelocity(velocity, true); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_timeOffset(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_GameObject* self= static_cast(self_v); SG_Node* sg_parent; if (self->GetSGNode() && (sg_parent = self->GetSGNode()->GetSGParent()) != NULL && sg_parent->IsSlowParent()) { return PyFloat_FromDouble(static_cast(sg_parent->GetParentRelation())->GetTimeOffset()); } else { return PyFloat_FromDouble(0.0); } } int KX_GameObject::pyattr_set_timeOffset(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); if (self->GetSGNode()) { MT_Scalar val = PyFloat_AsDouble(value); SG_Node* sg_parent= self->GetSGNode()->GetSGParent(); if (val < 0.0f) { /* also accounts for non float */ PyErr_SetString(PyExc_AttributeError, "gameOb.timeOffset = float: KX_GameObject, expected a float zero or above"); return PY_SET_ATTR_FAIL; } if (sg_parent && sg_parent->IsSlowParent()) static_cast(sg_parent->GetParentRelation())->SetTimeOffset(val); } return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_state(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_GameObject* self= static_cast(self_v); int state = 0; state |= self->GetState(); return PyLong_FromSsize_t(state); } int KX_GameObject::pyattr_set_state(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); int state_i = PyLong_AsSsize_t(value); unsigned int state = 0; if (state_i == -1 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "gameOb.state = int: KX_GameObject, expected an int bit field"); return PY_SET_ATTR_FAIL; } state |= state_i; if ((state & ((1<<30)-1)) == 0) { PyErr_SetString(PyExc_AttributeError, "gameOb.state = int: KX_GameObject, state bitfield was not between 0 and 30 (1<<0 and 1<<29)"); return PY_SET_ATTR_FAIL; } self->SetState(state); return PY_SET_ATTR_SUCCESS; } PyObject* KX_GameObject::pyattr_get_meshes(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_GameObject* self= static_cast(self_v); PyObject *meshes= PyList_New(self->m_meshes.size()); int i; for(i=0; i < (int)self->m_meshes.size(); i++) { KX_MeshProxy* meshproxy = new KX_MeshProxy(self->m_meshes[i]); PyList_SET_ITEM(meshes, i, meshproxy->NewProxy(true)); } return meshes; } PyObject* KX_GameObject::pyattr_get_obcolor(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { #ifdef USE_MATHUTILS return Vector_CreatePyObject_cb(BGE_PROXY_FROM_REF(self_v), 4, mathutils_kxgameob_vector_cb_index, MATHUTILS_VEC_CB_OBJECT_COLOR); #else KX_GameObject* self= static_cast(self_v); return PyObjectFrom(self->GetObjectColor()); #endif } int KX_GameObject::pyattr_set_obcolor(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef, PyObject *value) { KX_GameObject* self= static_cast(self_v); MT_Vector4 obcolor; if (!PyVecTo(value, obcolor)) return PY_SET_ATTR_FAIL; self->SetObjectColor(obcolor); return PY_SET_ATTR_SUCCESS; } /* These are experimental! */ PyObject* KX_GameObject::pyattr_get_sensors(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { return KX_PythonSeq_CreatePyObject((static_cast(self_v))->m_proxy, KX_PYGENSEQ_OB_TYPE_SENSORS); } PyObject* KX_GameObject::pyattr_get_controllers(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { return KX_PythonSeq_CreatePyObject((static_cast(self_v))->m_proxy, KX_PYGENSEQ_OB_TYPE_CONTROLLERS); } PyObject* KX_GameObject::pyattr_get_actuators(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { return KX_PythonSeq_CreatePyObject((static_cast(self_v))->m_proxy, KX_PYGENSEQ_OB_TYPE_ACTUATORS); } /* End experimental */ PyObject* KX_GameObject::pyattr_get_children(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_GameObject* self= static_cast(self_v); return self->GetChildren()->NewProxy(true); } PyObject* KX_GameObject::pyattr_get_children_recursive(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_GameObject* self= static_cast(self_v); return self->GetChildrenRecursive()->NewProxy(true); } PyObject* KX_GameObject::pyattr_get_attrDict(void *self_v, const KX_PYATTRIBUTE_DEF *attrdef) { KX_GameObject* self= static_cast(self_v); if(self->m_attr_dict==NULL) self->m_attr_dict= PyDict_New(); Py_INCREF(self->m_attr_dict); return self->m_attr_dict; } PyObject* KX_GameObject::PyApplyForce(PyObject* args) { int local = 0; PyObject* pyvect; if (PyArg_ParseTuple(args, "O|i:applyForce", &pyvect, &local)) { MT_Vector3 force; if (PyVecTo(pyvect, force)) { ApplyForce(force, (local!=0)); Py_RETURN_NONE; } } return NULL; } PyObject* KX_GameObject::PyApplyTorque(PyObject* args) { int local = 0; PyObject* pyvect; if (PyArg_ParseTuple(args, "O|i:applyTorque", &pyvect, &local)) { MT_Vector3 torque; if (PyVecTo(pyvect, torque)) { ApplyTorque(torque, (local!=0)); Py_RETURN_NONE; } } return NULL; } PyObject* KX_GameObject::PyApplyRotation(PyObject* args) { int local = 0; PyObject* pyvect; if (PyArg_ParseTuple(args, "O|i:applyRotation", &pyvect, &local)) { MT_Vector3 rotation; if (PyVecTo(pyvect, rotation)) { ApplyRotation(rotation, (local!=0)); Py_RETURN_NONE; } } return NULL; } PyObject* KX_GameObject::PyApplyMovement(PyObject* args) { int local = 0; PyObject* pyvect; if (PyArg_ParseTuple(args, "O|i:applyMovement", &pyvect, &local)) { MT_Vector3 movement; if (PyVecTo(pyvect, movement)) { ApplyMovement(movement, (local!=0)); Py_RETURN_NONE; } } return NULL; } PyObject* KX_GameObject::PyGetLinearVelocity(PyObject* args) { // only can get the velocity if we have a physics object connected to us... int local = 0; if (PyArg_ParseTuple(args,"|i:getLinearVelocity",&local)) { return PyObjectFrom(GetLinearVelocity((local!=0))); } else { return NULL; } } PyObject* KX_GameObject::PySetLinearVelocity(PyObject* args) { int local = 0; PyObject* pyvect; if (PyArg_ParseTuple(args,"O|i:setLinearVelocity",&pyvect,&local)) { MT_Vector3 velocity; if (PyVecTo(pyvect, velocity)) { setLinearVelocity(velocity, (local!=0)); Py_RETURN_NONE; } } return NULL; } PyObject* KX_GameObject::PyGetAngularVelocity(PyObject* args) { // only can get the velocity if we have a physics object connected to us... int local = 0; if (PyArg_ParseTuple(args,"|i:getAngularVelocity",&local)) { return PyObjectFrom(GetAngularVelocity((local!=0))); } else { return NULL; } } PyObject* KX_GameObject::PySetAngularVelocity(PyObject* args) { int local = 0; PyObject* pyvect; if (PyArg_ParseTuple(args,"O|i:setAngularVelocity",&pyvect,&local)) { MT_Vector3 velocity; if (PyVecTo(pyvect, velocity)) { setAngularVelocity(velocity, (local!=0)); Py_RETURN_NONE; } } return NULL; } PyObject* KX_GameObject::PySetVisible(PyObject* args) { int visible, recursive = 0; if (!PyArg_ParseTuple(args,"i|i:setVisible",&visible, &recursive)) return NULL; SetVisible(visible ? true:false, recursive ? true:false); UpdateBuckets(recursive ? true:false); Py_RETURN_NONE; } PyObject* KX_GameObject::PySetOcclusion(PyObject* args) { int occlusion, recursive = 0; if (!PyArg_ParseTuple(args,"i|i:setOcclusion",&occlusion, &recursive)) return NULL; SetOccluder(occlusion ? true:false, recursive ? true:false); Py_RETURN_NONE; } PyObject* KX_GameObject::PyGetVelocity(PyObject* args) { // only can get the velocity if we have a physics object connected to us... MT_Point3 point(0.0,0.0,0.0); PyObject* pypos = NULL; if (!PyArg_ParseTuple(args, "|O:getVelocity", &pypos) || (pypos && !PyVecTo(pypos, point))) return NULL; if (m_pPhysicsController1) { return PyObjectFrom(m_pPhysicsController1->GetVelocity(point)); } else { return PyObjectFrom(MT_Vector3(0.0,0.0,0.0)); } } PyObject* KX_GameObject::PyGetReactionForce() { // only can get the velocity if we have a physics object connected to us... // XXX - Currently not working with bullet intergration, see KX_BulletPhysicsController.cpp's getReactionForce /* if (GetPhysicsController()) return PyObjectFrom(GetPhysicsController()->getReactionForce()); return PyObjectFrom(dummy_point); */ return Py_BuildValue("fff", 0.0f, 0.0f, 0.0f); } PyObject* KX_GameObject::PyEnableRigidBody() { if(GetPhysicsController()) GetPhysicsController()->setRigidBody(true); Py_RETURN_NONE; } PyObject* KX_GameObject::PyDisableRigidBody() { if(GetPhysicsController()) GetPhysicsController()->setRigidBody(false); Py_RETURN_NONE; } PyObject* KX_GameObject::PySetParent(PyObject* args) { KX_Scene *scene = KX_GetActiveScene(); PyObject* pyobj; KX_GameObject *obj; int addToCompound=1, ghost=1; if (!PyArg_ParseTuple(args,"O|ii:setParent", &pyobj, &addToCompound, &ghost)) { return NULL; // Python sets a simple error } if (!ConvertPythonToGameObject(pyobj, &obj, true, "gameOb.setParent(obj): KX_GameObject")) return NULL; if (obj) this->SetParent(scene, obj, addToCompound, ghost); Py_RETURN_NONE; } PyObject* KX_GameObject::PyRemoveParent() { KX_Scene *scene = KX_GetActiveScene(); this->RemoveParent(scene); Py_RETURN_NONE; } PyObject* KX_GameObject::PySetCollisionMargin(PyObject* value) { float collisionMargin = PyFloat_AsDouble(value); if (collisionMargin==-1 && PyErr_Occurred()) { PyErr_SetString(PyExc_TypeError, "expected a float"); return NULL; } if (m_pPhysicsController1) { m_pPhysicsController1->setMargin(collisionMargin); Py_RETURN_NONE; } PyErr_SetString(PyExc_RuntimeError, "This object has no physics controller"); return NULL; } PyObject* KX_GameObject::PyApplyImpulse(PyObject* args) { PyObject* pyattach; PyObject* pyimpulse; if (!m_pPhysicsController1) { PyErr_SetString(PyExc_RuntimeError, "This object has no physics controller"); return NULL; } if (PyArg_ParseTuple(args, "OO:applyImpulse", &pyattach, &pyimpulse)) { MT_Point3 attach; MT_Vector3 impulse; if (PyVecTo(pyattach, attach) && PyVecTo(pyimpulse, impulse)) { m_pPhysicsController1->applyImpulse(attach, impulse); Py_RETURN_NONE; } } return NULL; } PyObject* KX_GameObject::PySuspendDynamics() { SuspendDynamics(); Py_RETURN_NONE; } PyObject* KX_GameObject::PyRestoreDynamics() { RestoreDynamics(); Py_RETURN_NONE; } PyObject* KX_GameObject::PyAlignAxisToVect(PyObject* args) { PyObject* pyvect; int axis = 2; //z axis is the default float fac = 1.0; if (PyArg_ParseTuple(args,"O|if:alignAxisToVect",&pyvect,&axis, &fac)) { MT_Vector3 vect; if (PyVecTo(pyvect, vect)) { if (fac<=0.0) Py_RETURN_NONE; // Nothing to do. if (fac> 1.0) fac= 1.0; AlignAxisToVect(vect,axis,fac); NodeUpdateGS(0.f); Py_RETURN_NONE; } } return NULL; } PyObject* KX_GameObject::PyGetAxisVect(PyObject* value) { MT_Vector3 vect; if (PyVecTo(value, vect)) { return PyObjectFrom(NodeGetWorldOrientation() * vect); } return NULL; } PyObject* KX_GameObject::PyGetPhysicsId() { KX_IPhysicsController* ctrl = GetPhysicsController(); uint_ptr physid=0; if (ctrl) { physid= (uint_ptr)ctrl->GetUserData(); } return PyLong_FromSsize_t((long)physid); } PyObject* KX_GameObject::PyGetPropertyNames() { PyObject *list= ConvertKeysToPython(); if(m_attr_dict) { PyObject *key, *value; Py_ssize_t pos = 0; while (PyDict_Next(m_attr_dict, &pos, &key, &value)) { PyList_Append(list, key); } } return list; } KX_PYMETHODDEF_DOC_O(KX_GameObject, getDistanceTo, "getDistanceTo(other): get distance to another point/KX_GameObject") { MT_Point3 b; if (PyVecTo(value, b)) { return PyFloat_FromDouble(NodeGetWorldPosition().distance(b)); } PyErr_Clear(); KX_GameObject *other; if (ConvertPythonToGameObject(value, &other, false, "gameOb.getDistanceTo(value): KX_GameObject")) { return PyFloat_FromDouble(NodeGetWorldPosition().distance(other->NodeGetWorldPosition())); } return NULL; } KX_PYMETHODDEF_DOC_O(KX_GameObject, getVectTo, "getVectTo(other): get vector and the distance to another point/KX_GameObject\n" "Returns a 3-tuple with (distance,worldVector,localVector)\n") { MT_Point3 toPoint, fromPoint; MT_Vector3 toDir, locToDir; MT_Scalar distance; PyObject *returnValue; if (!PyVecTo(value, toPoint)) { PyErr_Clear(); KX_GameObject *other; if (ConvertPythonToGameObject(value, &other, false, "")) /* error will be overwritten */ { toPoint = other->NodeGetWorldPosition(); } else { PyErr_SetString(PyExc_TypeError, "gameOb.getVectTo(other): KX_GameObject, expected a 3D Vector or KX_GameObject type"); return NULL; } } fromPoint = NodeGetWorldPosition(); toDir = toPoint-fromPoint; distance = toDir.length(); if (MT_fuzzyZero(distance)) { //cout << "getVectTo() Error: Null vector!\n"; locToDir = toDir = MT_Vector3(0.0,0.0,0.0); distance = 0.0; } else { toDir.normalize(); locToDir = toDir * NodeGetWorldOrientation(); } returnValue = PyTuple_New(3); if (returnValue) { // very unlikely to fail, python sets a memory error here. PyTuple_SET_ITEM(returnValue, 0, PyFloat_FromDouble(distance)); PyTuple_SET_ITEM(returnValue, 1, PyObjectFrom(toDir)); PyTuple_SET_ITEM(returnValue, 2, PyObjectFrom(locToDir)); } return returnValue; } bool KX_GameObject::RayHit(KX_ClientObjectInfo* client, KX_RayCast* result, void * const data) { KX_GameObject* hitKXObj = client->m_gameobject; // if X-ray option is selected, the unwnted objects were not tested, so get here only with true hit // if not, all objects were tested and the front one may not be the correct one. if (m_xray || m_testPropName.Length() == 0 || hitKXObj->GetProperty(m_testPropName) != NULL) { m_pHitObject = hitKXObj; return true; } // return true to stop RayCast::RayTest from looping, the above test was decisive // We would want to loop only if we want to get more than one hit point return true; } /* this function is used to pre-filter the object before casting the ray on them. * This is useful for "X-Ray" option when we want to see "through" unwanted object. */ bool KX_GameObject::NeedRayCast(KX_ClientObjectInfo* client) { KX_GameObject* hitKXObj = client->m_gameobject; if (client->m_type > KX_ClientObjectInfo::ACTOR) { // Unknown type of object, skip it. // Should not occur as the sensor objects are filtered in RayTest() printf("Invalid client type %d found in ray casting\n", client->m_type); return false; } // if X-Ray option is selected, skip object that don't match the criteria as we see through them // if not, test all objects because we don't know yet which one will be on front if (!m_xray || m_testPropName.Length() == 0 || hitKXObj->GetProperty(m_testPropName) != NULL) { return true; } // skip the object return false; } KX_PYMETHODDEF_DOC(KX_GameObject, rayCastTo, "rayCastTo(other,dist,prop): look towards another point/KX_GameObject and return first object hit within dist that matches prop\n" " prop = property name that object must have; can be omitted => detect any object\n" " dist = max distance to look (can be negative => look behind); 0 or omitted => detect up to other\n" " other = 3-tuple or object reference") { MT_Point3 toPoint; PyObject* pyarg; float dist = 0.0f; char *propName = NULL; if (!PyArg_ParseTuple(args,"O|fs:rayCastTo", &pyarg, &dist, &propName)) { return NULL; // python sets simple error } if (!PyVecTo(pyarg, toPoint)) { KX_GameObject *other; PyErr_Clear(); if (ConvertPythonToGameObject(pyarg, &other, false, "")) /* error will be overwritten */ { toPoint = other->NodeGetWorldPosition(); } else { PyErr_SetString(PyExc_TypeError, "gameOb.rayCastTo(other,dist,prop): KX_GameObject, the first argument to rayCastTo must be a vector or a KX_GameObject"); return NULL; } } MT_Point3 fromPoint = NodeGetWorldPosition(); if (dist != 0.0f) toPoint = fromPoint + dist * (toPoint-fromPoint).safe_normalized(); PHY_IPhysicsEnvironment* pe = KX_GetActiveScene()->GetPhysicsEnvironment(); KX_IPhysicsController *spc = GetPhysicsController(); KX_GameObject *parent = GetParent(); if (!spc && parent) spc = parent->GetPhysicsController(); if (parent) parent->Release(); m_pHitObject = NULL; if (propName) m_testPropName = propName; else m_testPropName.SetLength(0); KX_RayCast::Callback callback(this,spc); KX_RayCast::RayTest(pe, fromPoint, toPoint, callback); if (m_pHitObject) return m_pHitObject->GetProxy(); Py_RETURN_NONE; } /* faster then Py_BuildValue since some scripts call raycast a lot */ static PyObject *none_tuple_3() { PyObject *ret= PyTuple_New(3); PyTuple_SET_ITEM(ret, 0, Py_None); PyTuple_SET_ITEM(ret, 1, Py_None); PyTuple_SET_ITEM(ret, 2, Py_None); Py_INCREF(Py_None); Py_INCREF(Py_None); Py_INCREF(Py_None); return ret; } static PyObject *none_tuple_4() { PyObject *ret= PyTuple_New(4); PyTuple_SET_ITEM(ret, 0, Py_None); PyTuple_SET_ITEM(ret, 1, Py_None); PyTuple_SET_ITEM(ret, 2, Py_None); PyTuple_SET_ITEM(ret, 3, Py_None); Py_INCREF(Py_None); Py_INCREF(Py_None); Py_INCREF(Py_None); Py_INCREF(Py_None); return ret; } static PyObject *none_tuple_5() { PyObject *ret= PyTuple_New(5); PyTuple_SET_ITEM(ret, 0, Py_None); PyTuple_SET_ITEM(ret, 1, Py_None); PyTuple_SET_ITEM(ret, 2, Py_None); PyTuple_SET_ITEM(ret, 3, Py_None); PyTuple_SET_ITEM(ret, 4, Py_None); Py_INCREF(Py_None); Py_INCREF(Py_None); Py_INCREF(Py_None); Py_INCREF(Py_None); Py_INCREF(Py_None); return ret; } KX_PYMETHODDEF_DOC(KX_GameObject, rayCast, "rayCast(to,from,dist,prop,face,xray,poly): cast a ray and return 3-tuple (object,hit,normal) or 4-tuple (object,hit,normal,polygon) or 4-tuple (object,hit,normal,polygon,hituv) of contact point with object within dist that matches prop.\n" " If no hit, return (None,None,None) or (None,None,None,None) or (None,None,None,None,None).\n" " to = 3-tuple or object reference for destination of ray (if object, use center of object)\n" " from = 3-tuple or object reference for origin of ray (if object, use center of object)\n" " Can be None or omitted => start from self object center\n" " dist = max distance to look (can be negative => look behind); 0 or omitted => detect up to to\n" " prop = property name that object must have; can be omitted => detect any object\n" " face = normal option: 1=>return face normal; 0 or omitted => normal is oriented towards origin\n" " xray = X-ray option: 1=>skip objects that don't match prop; 0 or omitted => stop on first object\n" " poly = polygon option: 1=>return value is a 4-tuple and the 4th element is a KX_PolyProxy object\n" " which can be None if hit object has no mesh or if there is no hit\n" " 2=>return value is a 5-tuple, the 4th element is the KX_PolyProxy object\n" " and the 5th element is the vector of UV coordinates at the hit point of the None if there is no UV mapping\n" " If 0 or omitted, return value is a 3-tuple\n" "Note: The object on which you call this method matters: the ray will ignore it.\n" " prop and xray option interact as follow:\n" " prop off, xray off: return closest hit or no hit if there is no object on the full extend of the ray\n" " prop off, xray on : idem\n" " prop on, xray off: return closest hit if it matches prop, no hit otherwise\n" " prop on, xray on : return closest hit matching prop or no hit if there is no object matching prop on the full extend of the ray\n") { MT_Point3 toPoint; MT_Point3 fromPoint; PyObject* pyto; PyObject* pyfrom = NULL; float dist = 0.0f; char *propName = NULL; KX_GameObject *other; int face=0, xray=0, poly=0; if (!PyArg_ParseTuple(args,"O|Ofsiii:rayCast", &pyto, &pyfrom, &dist, &propName, &face, &xray, &poly)) { return NULL; // Python sets a simple error } if (!PyVecTo(pyto, toPoint)) { PyErr_Clear(); if (ConvertPythonToGameObject(pyto, &other, false, "")) /* error will be overwritten */ { toPoint = other->NodeGetWorldPosition(); } else { PyErr_SetString(PyExc_TypeError, "the first argument to rayCast must be a vector or a KX_GameObject"); return NULL; } } if (!pyfrom || pyfrom == Py_None) { fromPoint = NodeGetWorldPosition(); } else if (!PyVecTo(pyfrom, fromPoint)) { PyErr_Clear(); if (ConvertPythonToGameObject(pyfrom, &other, false, "")) /* error will be overwritten */ { fromPoint = other->NodeGetWorldPosition(); } else { PyErr_SetString(PyExc_TypeError, "gameOb.rayCast(to,from,dist,prop,face,xray,poly): KX_GameObject, the second optional argument to rayCast must be a vector or a KX_GameObject"); return NULL; } } if (dist != 0.0f) { MT_Vector3 toDir = toPoint-fromPoint; if (MT_fuzzyZero(toDir.length2())) { //return Py_BuildValue("OOO", Py_None, Py_None, Py_None); return none_tuple_3(); } toDir.normalize(); toPoint = fromPoint + (dist) * toDir; } else if (MT_fuzzyZero((toPoint-fromPoint).length2())) { //return Py_BuildValue("OOO", Py_None, Py_None, Py_None); return none_tuple_3(); } PHY_IPhysicsEnvironment* pe = KX_GetActiveScene()->GetPhysicsEnvironment(); KX_IPhysicsController *spc = GetPhysicsController(); KX_GameObject *parent = GetParent(); if (!spc && parent) spc = parent->GetPhysicsController(); if (parent) parent->Release(); m_pHitObject = NULL; if (propName) m_testPropName = propName; else m_testPropName.SetLength(0); m_xray = xray; // to get the hit results KX_RayCast::Callback callback(this,spc,NULL,face,(poly==2)); KX_RayCast::RayTest(pe, fromPoint, toPoint, callback); if (m_pHitObject) { PyObject* returnValue = (poly==2) ? PyTuple_New(5) : (poly) ? PyTuple_New(4) : PyTuple_New(3); if (returnValue) { // unlikely this would ever fail, if it does python sets an error PyTuple_SET_ITEM(returnValue, 0, m_pHitObject->GetProxy()); PyTuple_SET_ITEM(returnValue, 1, PyObjectFrom(callback.m_hitPoint)); PyTuple_SET_ITEM(returnValue, 2, PyObjectFrom(callback.m_hitNormal)); if (poly) { if (callback.m_hitMesh) { // if this field is set, then we can trust that m_hitPolygon is a valid polygon RAS_Polygon* polygon = callback.m_hitMesh->GetPolygon(callback.m_hitPolygon); KX_PolyProxy* polyproxy = new KX_PolyProxy(callback.m_hitMesh, polygon); PyTuple_SET_ITEM(returnValue, 3, polyproxy->NewProxy(true)); if (poly == 2) { if (callback.m_hitUVOK) PyTuple_SET_ITEM(returnValue, 4, PyObjectFrom(callback.m_hitUV)); else { Py_INCREF(Py_None); PyTuple_SET_ITEM(returnValue, 4, Py_None); } } } else { Py_INCREF(Py_None); PyTuple_SET_ITEM(returnValue, 3, Py_None); if (poly==2) { Py_INCREF(Py_None); PyTuple_SET_ITEM(returnValue, 4, Py_None); } } } } return returnValue; } // no hit if (poly == 2) return none_tuple_5(); else if (poly) return none_tuple_4(); else return none_tuple_3(); } KX_PYMETHODDEF_DOC_VARARGS(KX_GameObject, sendMessage, "sendMessage(subject, [body, to])\n" "sends a message in same manner as a message actuator" "subject = Subject of the message (string)" "body = Message body (string)" "to = Name of object to send the message to") { KX_Scene *scene = KX_GetActiveScene(); char* subject; char* body = (char *)""; char* to = (char *)""; const STR_String& from = GetName(); if (!PyArg_ParseTuple(args, "s|ss:sendMessage", &subject, &body, &to)) return NULL; scene->GetNetworkScene()->SendMessage(to, from, subject, body); Py_RETURN_NONE; } static void layer_check(short &layer, const char *method_name) { if (layer < 0 || layer >= MAX_ACTION_LAYERS) { printf("KX_GameObject.%s(): given layer (%d) is out of range (0 - %d), setting to 0.\n", method_name, layer, MAX_ACTION_LAYERS-1); layer = 0; } } KX_PYMETHODDEF_DOC(KX_GameObject, playAction, "playAction(name, start_frame, end_frame, layer=0, priority=0 blendin=0, play_mode=ACT_MODE_PLAY, layer_weight=0.0, ipo_flags=0, speed=1.0)\n" "Plays an action\n") { const char* name; float start, end, blendin=0.f, speed=1.f, layer_weight=0.f; short layer=0, priority=0; short ipo_flags=0; short play_mode=0; static const char *kwlist[] = {"name", "start_frame", "end_frame", "layer", "priority", "blendin", "play_mode", "layer_weight", "ipo_flags", "speed", NULL}; if (!PyArg_ParseTupleAndKeywords(args, kwds, "sff|hhfhfhf:playAction", const_cast(kwlist), &name, &start, &end, &layer, &priority, &blendin, &play_mode, &layer_weight, &ipo_flags, &speed)) return NULL; layer_check(layer, "playAction"); if (play_mode < 0 || play_mode > BL_Action::ACT_MODE_MAX) { printf("KX_GameObject.playAction(): given play_mode (%d) is out of range (0 - %d), setting to ACT_MODE_PLAY", play_mode, BL_Action::ACT_MODE_MAX-1); play_mode = BL_Action::ACT_MODE_MAX; } if (layer_weight < 0.f || layer_weight > 1.f) { printf("KX_GameObject.playAction(): given layer_weight (%f) is out of range (0.0 - 1.0), setting to 0.0", layer_weight); layer_weight = 0.f; } PlayAction(name, start, end, layer, priority, blendin, play_mode, layer_weight, ipo_flags, speed); Py_RETURN_NONE; } KX_PYMETHODDEF_DOC(KX_GameObject, stopAction, "stopAction(layer=0)\n" "Stop playing the action on the given layer\n") { short layer=0; if (!PyArg_ParseTuple(args, "|h:stopAction", &layer)) return NULL; layer_check(layer, "stopAction"); StopAction(layer); Py_RETURN_NONE; } KX_PYMETHODDEF_DOC(KX_GameObject, getActionFrame, "getActionFrame(layer=0)\n" "Gets the current frame of the action playing in the supplied layer\n") { short layer=0; if (!PyArg_ParseTuple(args, "|h:getActionFrame", &layer)) return NULL; layer_check(layer, "getActionFrame"); return PyFloat_FromDouble(GetActionFrame(layer)); } KX_PYMETHODDEF_DOC(KX_GameObject, setActionFrame, "setActionFrame(frame, layer=0)\n" "Set the current frame of the action playing in the supplied layer\n") { short layer=0; float frame; if (!PyArg_ParseTuple(args, "f|h:setActionFrame", &frame, &layer)) return NULL; layer_check(layer, "setActionFrame"); SetActionFrame(layer, frame); Py_RETURN_NONE; } KX_PYMETHODDEF_DOC(KX_GameObject, isPlayingAction, "isPlayingAction(layer=0)\n" "Checks to see if there is an action playing in the given layer\n") { short layer=0; if (!PyArg_ParseTuple(args, "|h:isPlayingAction", &layer)) return NULL; layer_check(layer, "isPlayingAction"); return PyBool_FromLong(!IsActionDone(layer)); } /* dict style access */ /* Matches python dict.get(key, [default]) */ PyObject* KX_GameObject::Pyget(PyObject *args) { PyObject *key; PyObject* def = Py_None; PyObject* ret; if (!PyArg_ParseTuple(args, "O|O:get", &key, &def)) return NULL; if(PyUnicode_Check(key)) { CValue *item = GetProperty(_PyUnicode_AsString(key)); if (item) { ret = item->ConvertValueToPython(); if(ret) return ret; else return item->GetProxy(); } } if (m_attr_dict && (ret=PyDict_GetItem(m_attr_dict, key))) { Py_INCREF(ret); return ret; } Py_INCREF(def); return def; } bool ConvertPythonToGameObject(PyObject * value, KX_GameObject **object, bool py_none_ok, const char *error_prefix) { if (value==NULL) { PyErr_Format(PyExc_TypeError, "%s, python pointer NULL, should never happen", error_prefix); *object = NULL; return false; } if (value==Py_None) { *object = NULL; if (py_none_ok) { return true; } else { PyErr_Format(PyExc_TypeError, "%s, expected KX_GameObject or a KX_GameObject name, None is invalid", error_prefix); return false; } } if (PyUnicode_Check(value)) { *object = (KX_GameObject*)SCA_ILogicBrick::m_sCurrentLogicManager->GetGameObjectByName(STR_String( _PyUnicode_AsString(value) )); if (*object) { return true; } else { PyErr_Format(PyExc_ValueError, "%s, requested name \"%s\" did not match any KX_GameObject in this scene", error_prefix, _PyUnicode_AsString(value)); return false; } } if ( PyObject_TypeCheck(value, &KX_GameObject::Type) || PyObject_TypeCheck(value, &KX_LightObject::Type) || PyObject_TypeCheck(value, &KX_Camera::Type) || PyObject_TypeCheck(value, &KX_FontObject::Type)) { *object = static_castBGE_PROXY_REF(value); /* sets the error */ if (*object==NULL) { PyErr_Format(PyExc_SystemError, "%s, " BGE_PROXY_ERROR_MSG, error_prefix); return false; } return true; } *object = NULL; if (py_none_ok) { PyErr_Format(PyExc_TypeError, "%s, expect a KX_GameObject, a string or None", error_prefix); } else { PyErr_Format(PyExc_TypeError, "%s, expect a KX_GameObject or a string", error_prefix); } return false; } #endif // WITH_PYTHON