Files
vpp/src/vnet/interface_funcs.h

479 lines
15 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015 Cisco and/or its affiliates.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* interface_funcs.h: VNET interfaces/sub-interfaces exported functions
*
* Copyright (c) 2008 Eliot Dresselhaus
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef included_vnet_interface_funcs_h
#define included_vnet_interface_funcs_h
always_inline vnet_hw_interface_t *
vnet_get_hw_interface (vnet_main_t * vnm, u32 hw_if_index)
{
return pool_elt_at_index (vnm->interface_main.hw_interfaces, hw_if_index);
}
always_inline vnet_hw_interface_t *
vnet_get_hw_interface_safe (vnet_main_t * vnm, u32 hw_if_index)
{
if (!pool_is_free_index (vnm->interface_main.hw_interfaces, hw_if_index))
return pool_elt_at_index (vnm->interface_main.hw_interfaces, hw_if_index);
return (NULL);
}
always_inline vnet_sw_interface_t *
vnet_get_sw_interface (vnet_main_t * vnm, u32 sw_if_index)
{
return pool_elt_at_index (vnm->interface_main.sw_interfaces, sw_if_index);
}
always_inline vnet_sw_interface_t *
vnet_get_sw_interface_safe (vnet_main_t * vnm, u32 sw_if_index)
{
if (!pool_is_free_index (vnm->interface_main.sw_interfaces, sw_if_index))
return pool_elt_at_index (vnm->interface_main.sw_interfaces, sw_if_index);
return (NULL);
}
always_inline vnet_sw_interface_t *
vnet_get_hw_sw_interface (vnet_main_t * vnm, u32 hw_if_index)
{
vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index);
vnet_sw_interface_t *sw = vnet_get_sw_interface (vnm, hw->sw_if_index);
ASSERT (sw->type == VNET_SW_INTERFACE_TYPE_HARDWARE);
return sw;
}
always_inline vnet_sw_interface_t *
vnet_get_sup_sw_interface (vnet_main_t * vnm, u32 sw_if_index)
{
vnet_sw_interface_t *sw = vnet_get_sw_interface (vnm, sw_if_index);
if (sw->type == VNET_SW_INTERFACE_TYPE_SUB ||
sw->type == VNET_SW_INTERFACE_TYPE_PIPE ||
sw->type == VNET_SW_INTERFACE_TYPE_P2P)
sw = vnet_get_sw_interface (vnm, sw->sup_sw_if_index);
return sw;
}
always_inline vnet_hw_interface_t *
vnet_get_sup_hw_interface (vnet_main_t * vnm, u32 sw_if_index)
{
vnet_sw_interface_t *sw = vnet_get_sup_sw_interface (vnm, sw_if_index);
ASSERT ((sw->type == VNET_SW_INTERFACE_TYPE_HARDWARE) ||
(sw->type == VNET_SW_INTERFACE_TYPE_PIPE));
return vnet_get_hw_interface (vnm, sw->hw_if_index);
}
always_inline vnet_hw_interface_class_t *
vnet_get_hw_interface_class (vnet_main_t * vnm, u32 hw_class_index)
{
return vec_elt_at_index (vnm->interface_main.hw_interface_classes,
hw_class_index);
}
always_inline vnet_device_class_t *
vnet_get_device_class (vnet_main_t * vnm, u32 dev_class_index)
{
return vec_elt_at_index (vnm->interface_main.device_classes,
dev_class_index);
}
static inline u8 *
vnet_get_sw_interface_tag (vnet_main_t * vnm, u32 sw_if_index)
{
uword *p;
p = hash_get (vnm->interface_tag_by_sw_if_index, sw_if_index);
if (p)
return ((u8 *) p[0]);
return 0;
}
static inline void
vnet_set_sw_interface_tag (vnet_main_t * vnm, u8 * tag, u32 sw_if_index)
{
uword *p;
p = hash_get (vnm->interface_tag_by_sw_if_index, sw_if_index);
if (p)
{
u8 *oldtag = (u8 *) p[0];
hash_unset (vnm->interface_tag_by_sw_if_index, sw_if_index);
vec_free (oldtag);
}
hash_set (vnm->interface_tag_by_sw_if_index, sw_if_index, tag);
}
static inline void
vnet_clear_sw_interface_tag (vnet_main_t * vnm, u32 sw_if_index)
{
uword *p;
p = hash_get (vnm->interface_tag_by_sw_if_index, sw_if_index);
if (p)
{
u8 *oldtag = (u8 *) p[0];
hash_unset (vnm->interface_tag_by_sw_if_index, sw_if_index);
vec_free (oldtag);
}
}
/**
* Walk return code
*/
typedef enum walk_rc_t_
{
WALK_STOP,
WALK_CONTINUE,
} walk_rc_t;
/**
* Call back walk type for walking SW indices on a HW interface
*/
typedef walk_rc_t (*vnet_hw_sw_interface_walk_t) (vnet_main_t * vnm,
u32 sw_if_index, void *ctx);
/**
* @brief
* Walk the SW interfaces on a HW interface - this is the super
* interface and any sub-interfaces.
*/
void vnet_hw_interface_walk_sw (vnet_main_t * vnm,
u32 hw_if_index,
vnet_hw_sw_interface_walk_t fn, void *ctx);
/**
* Call back walk type for walking SW indices on a HW interface
*/
typedef walk_rc_t (*vnet_sw_interface_walk_t) (vnet_main_t * vnm,
vnet_sw_interface_t * si,
void *ctx);
/**
* @brief
* Walk all the SW interfaces in the system.
*/
void vnet_sw_interface_walk (vnet_main_t * vnm,
vnet_sw_interface_walk_t fn, void *ctx);
/**
* Call back walk type for walking all HW indices
*/
typedef walk_rc_t (*vnet_hw_interface_walk_t) (vnet_main_t * vnm,
u32 hw_if_index, void *ctx);
/**
* @brief
* Walk all the HW interface
*/
void vnet_hw_interface_walk (vnet_main_t * vnm,
vnet_hw_interface_walk_t fn, void *ctx);
/* Register a hardware interface instance. */
u32 vnet_register_interface (vnet_main_t * vnm,
u32 dev_class_index,
u32 dev_instance,
u32 hw_class_index, u32 hw_instance);
/**
* Set interface output node - for interface registered without its output/tx
* nodes created because its VNET_DEVICE_CLASS did not specify any tx_function.
* This is typically the case for tunnel interfaces.
*/
void vnet_set_interface_output_node (vnet_main_t * vnm,
u32 hw_if_index, u32 node_index);
/* Creates a software interface given template. */
clib_error_t *vnet_create_sw_interface (vnet_main_t * vnm,
vnet_sw_interface_t * template,
u32 * sw_if_index);
void vnet_delete_hw_interface (vnet_main_t * vnm, u32 hw_if_index);
void vnet_delete_sw_interface (vnet_main_t * vnm, u32 sw_if_index);
int vnet_sw_interface_is_p2p (vnet_main_t * vnm, u32 sw_if_index);
always_inline vnet_sw_interface_flags_t
vnet_sw_interface_get_flags (vnet_main_t * vnm, u32 sw_if_index)
{
vnet_sw_interface_t *sw = vnet_get_sw_interface (vnm, sw_if_index);
return sw->flags;
}
always_inline uword
vnet_sw_interface_is_valid (vnet_main_t * vnm, u32 sw_if_index)
{
return !pool_is_free_index (vnm->interface_main.sw_interfaces, sw_if_index);
}
always_inline uword
vnet_hw_interface_is_valid (vnet_main_t * vnm, u32 hw_if_index)
{
return !pool_is_free_index (vnm->interface_main.hw_interfaces, hw_if_index);
}
always_inline uword
vnet_sw_interface_is_admin_up (vnet_main_t * vnm, u32 sw_if_index)
{
return (vnet_sw_interface_get_flags (vnm, sw_if_index) &
VNET_SW_INTERFACE_FLAG_ADMIN_UP) != 0;
}
always_inline uword
vnet_swif_is_api_visible (vnet_sw_interface_t * si)
{
return !(si->flags & VNET_SW_INTERFACE_FLAG_HIDDEN);
}
always_inline uword
vnet_sw_interface_is_api_visible (vnet_main_t * vnm, u32 sw_if_index)
{
vnet_sw_interface_t *si = vnet_get_sw_interface (vnm, sw_if_index);
return vnet_swif_is_api_visible (si);
}
always_inline uword
vnet_sw_interface_is_api_valid (vnet_main_t * vnm, u32 sw_if_index)
{
return !pool_is_free_index (vnm->interface_main.sw_interfaces, sw_if_index)
&& vnet_sw_interface_is_api_visible (vnm, sw_if_index);
}
always_inline const u8 *
vnet_sw_interface_get_hw_address (vnet_main_t * vnm, u32 sw_if_index)
{
vnet_hw_interface_t *hw = vnet_get_sup_hw_interface (vnm, sw_if_index);
return hw->hw_address;
}
always_inline uword
vnet_hw_interface_get_flags (vnet_main_t * vnm, u32 hw_if_index)
{
vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index);
return hw->flags;
}
always_inline u32
vnet_hw_interface_get_mtu (vnet_main_t * vnm, u32 hw_if_index)
{
vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index);
return hw->max_packet_bytes;
}
always_inline u32
vnet_sw_interface_get_mtu (vnet_main_t * vnm, u32 sw_if_index, vnet_mtu_t af)
FIB2.0: Adjacency complete pull model (VPP-487) Change the adjacency completion model to pull not push. A complete adjacency has a rewirte string, an incomplete one does not. the re-write string for a peer comes either from a discovery protocol (i.e. ARP/ND) or can be directly derived from the link type (i.e. GRE tunnels). Which method it is, is interface type specific. For each packet type sent on a link to a peer there is a corresponding adjacency. For example, if there is a peer 10.0.0.1 on Eth0 and we need to send to it IPv4 and MPLS packets, there will be two adjacencies; one for the IPv4 and one for the MPLS packets. The adjacencies are thus distinguished by the packets the carry, this is known as the adjacency's 'link-type'. It is not an L3 packet type, since the adjacency can have a link type of Ethernet (for L2 over GRE). The discovery protocols are not aware of all the link types required - only the FIB is. the FIB will create adjacencies as and when they are required, and it is thus then desirable to 'pull' from the discovery protocol the re-write required. The alternative (that we have now) is that the discovery protocol pushes (i.e. creates) adjacencies for each link type - this creates more adjacencies than we need. To pull, FIB now requests from the interface-type to 'complete' the adjacency. The interface can then delegate to the discovery protocol (on ethernet links) or directly build the re-write (i.e on GRE). Change-Id: I61451789ae03f26b1012d8d6524007b769b6c6ee Signed-off-by: Neale Ranns <nranns@cisco.com>
2016-10-08 13:03:40 +01:00
{
vnet_sw_interface_t *sw = vnet_get_sw_interface (vnm, sw_if_index);
u32 mtu;
mtu = sw->mtu[af] > 0 ? sw->mtu[af] : sw->mtu[VNET_MTU_L3];
if (mtu == 0)
return 9000; /* $$$ Deal with interface-types not setting MTU */
return mtu;
FIB2.0: Adjacency complete pull model (VPP-487) Change the adjacency completion model to pull not push. A complete adjacency has a rewirte string, an incomplete one does not. the re-write string for a peer comes either from a discovery protocol (i.e. ARP/ND) or can be directly derived from the link type (i.e. GRE tunnels). Which method it is, is interface type specific. For each packet type sent on a link to a peer there is a corresponding adjacency. For example, if there is a peer 10.0.0.1 on Eth0 and we need to send to it IPv4 and MPLS packets, there will be two adjacencies; one for the IPv4 and one for the MPLS packets. The adjacencies are thus distinguished by the packets the carry, this is known as the adjacency's 'link-type'. It is not an L3 packet type, since the adjacency can have a link type of Ethernet (for L2 over GRE). The discovery protocols are not aware of all the link types required - only the FIB is. the FIB will create adjacencies as and when they are required, and it is thus then desirable to 'pull' from the discovery protocol the re-write required. The alternative (that we have now) is that the discovery protocol pushes (i.e. creates) adjacencies for each link type - this creates more adjacencies than we need. To pull, FIB now requests from the interface-type to 'complete' the adjacency. The interface can then delegate to the discovery protocol (on ethernet links) or directly build the re-write (i.e on GRE). Change-Id: I61451789ae03f26b1012d8d6524007b769b6c6ee Signed-off-by: Neale Ranns <nranns@cisco.com>
2016-10-08 13:03:40 +01:00
}
always_inline uword
vnet_hw_interface_is_link_up (vnet_main_t * vnm, u32 hw_if_index)
{
return ((vnet_hw_interface_get_flags (vnm, hw_if_index) &
VNET_HW_INTERFACE_FLAG_LINK_UP) != 0);
}
always_inline uword
vnet_sw_interface_is_link_up (vnet_main_t * vnm, u32 sw_if_index)
{
vnet_sw_interface_t *sw = vnet_get_sup_sw_interface (vnm, sw_if_index);
return (vnet_hw_interface_is_link_up (vnm, sw->hw_if_index));
}
always_inline uword
vnet_sw_interface_is_up (vnet_main_t * vnm, u32 sw_if_index)
{
return (vnet_sw_interface_is_admin_up (vnm, sw_if_index) &&
vnet_sw_interface_is_link_up (vnm, sw_if_index));
}
always_inline vlib_frame_t *
vnet_get_frame_to_sw_interface (vnet_main_t * vnm, u32 sw_if_index)
{
vnet_hw_interface_t *hw = vnet_get_sup_hw_interface (vnm, sw_if_index);
return vlib_get_frame_to_node (vlib_get_main (), hw->output_node_index);
}
always_inline void
vnet_put_frame_to_sw_interface (vnet_main_t * vnm, u32 sw_if_index,
vlib_frame_t * f)
{
vnet_hw_interface_t *hw = vnet_get_sup_hw_interface (vnm, sw_if_index);
return vlib_put_frame_to_node (vlib_get_main (), hw->output_node_index, f);
}
always_inline void
vnet_hw_interface_set_link_speed (vnet_main_t * vnm, u32 hw_if_index,
u32 link_speed)
{
vnet_hw_interface_t *hw = vnet_get_hw_interface (vnm, hw_if_index);
hw->link_speed = link_speed;
}
/* Change interface flags (e.g. up, down, enable, disable). */
clib_error_t *vnet_hw_interface_set_flags (vnet_main_t * vnm, u32 hw_if_index,
vnet_hw_interface_flags_t flags);
/* Change interface flags (e.g. up, down, enable, disable). */
clib_error_t *vnet_sw_interface_set_flags (vnet_main_t * vnm, u32 sw_if_index,
vnet_sw_interface_flags_t flags);
/* Change interface class. */
clib_error_t *vnet_hw_interface_set_class (vnet_main_t * vnm, u32 hw_if_index,
u32 new_hw_class_index);
/* Redirect rx pkts to node */
int vnet_hw_interface_rx_redirect_to_node (vnet_main_t * vnm, u32 hw_if_index,
u32 node_index);
void vnet_hw_interface_init_for_class (vnet_main_t * vnm, u32 hw_if_index,
u32 hw_class_index, u32 hw_instance);
/* Rename interface */
clib_error_t *vnet_rename_interface (vnet_main_t * vnm, u32 hw_if_index,
char *new_name);
/* Change interface mac address*/
clib_error_t *vnet_hw_interface_change_mac_address (vnet_main_t * vnm,
u32 hw_if_index,
const u8 * mac_address);
/* Change rx-mode */
clib_error_t *set_hw_interface_change_rx_mode (vnet_main_t * vnm,
u32 hw_if_index,
u8 queue_id_valid,
u32 queue_id,
vnet_hw_interface_rx_mode
mode);
/* Set rx-placement on the interface */
clib_error_t *set_hw_interface_rx_placement (u32 hw_if_index, u32 queue_id,
u32 thread_index, u8 is_main);
/* Set the MTU on the HW interface */
void vnet_hw_interface_set_mtu (vnet_main_t * vnm, u32 hw_if_index, u32 mtu);
/* Set the MTU on the SW interface */
void vnet_sw_interface_set_mtu (vnet_main_t * vnm, u32 sw_if_index, u32 mtu);
void vnet_sw_interface_set_protocol_mtu (vnet_main_t * vnm, u32 sw_if_index,
u32 mtu[]);
/* update the unnumbered state of an interface */
void vnet_sw_interface_update_unnumbered (u32 sw_if_index,
u32 ip_sw_if_index, u8 enable);
int vnet_sw_interface_stats_collect_enable_disable (u32 sw_if_index,
u8 enable);
void vnet_sw_interface_ip_directed_broadcast (vnet_main_t * vnm,
u32 sw_if_index, u8 enable);
/* Formats sw/hw interface. */
format_function_t format_vnet_hw_interface;
format_function_t format_vnet_hw_interface_rx_mode;
format_function_t format_vnet_hw_if_index_name;
format_function_t format_vnet_sw_interface;
format_function_t format_vnet_sw_interface_name;
format_function_t format_vnet_sw_interface_name_override;
format_function_t format_vnet_sw_if_index_name;
format_function_t format_vnet_sw_interface_flags;
/* Parses sw/hw interface name -> index. */
unformat_function_t unformat_vnet_sw_interface;
unformat_function_t unformat_vnet_hw_interface;
/* Parses interface flags (up, down, enable, disable, etc.) */
unformat_function_t unformat_vnet_hw_interface_flags;
unformat_function_t unformat_vnet_sw_interface_flags;
/* Node runtime for interface output function. */
typedef struct
{
u32 hw_if_index;
u32 sw_if_index;
u32 dev_instance;
u32 is_deleted;
} vnet_interface_output_runtime_t;
/* Interface output function. */
word vnet_sw_interface_compare (vnet_main_t * vnm, uword sw_if_index0,
uword sw_if_index1);
word vnet_hw_interface_compare (vnet_main_t * vnm, uword hw_if_index0,
uword hw_if_index1);
typedef enum
{
VNET_INTERFACE_OUTPUT_NEXT_DROP,
VNET_INTERFACE_OUTPUT_NEXT_TX,
} vnet_interface_output_next_t;
typedef enum
{
VNET_INTERFACE_TX_NEXT_DROP,
VNET_INTERFACE_TX_N_NEXT,
} vnet_interface_tx_next_t;
#define VNET_SIMULATED_ETHERNET_TX_NEXT_ETHERNET_INPUT VNET_INTERFACE_TX_N_NEXT
#define VNET_SIMULATED_ETHERNET_TX_NEXT_L2_INPUT (VNET_SIMULATED_ETHERNET_TX_NEXT_ETHERNET_INPUT + 1)
typedef enum
{
VNET_INTERFACE_OUTPUT_ERROR_INTERFACE_DOWN,
VNET_INTERFACE_OUTPUT_ERROR_INTERFACE_DELETED,
tap gso: experimental support This commit adds a "gso" parameter to existing "create tap..." CLI, and a "no-gso" parameter for the compatibility with the future, when/if defaults change. It makes use of the lowest bit of the "tap_flags" field in the API call in order to allow creation of GSO interfaces via API as well. It does the necessary syscalls to enable the GSO and checksum offload support on the kernel side and sets two flags on the interface: virtio-specific virtio_if_t.gso_enabled, and vnet_hw_interface_t.flags & VNET_HW_INTERFACE_FLAG_SUPPORTS_GSO. The first one, if enabled, triggers the marking of the GSO-encapsulated packets on ingress with VNET_BUFFER_F_GSO flag, and setting vnet_buffer2(b)->gso_size to the desired L4 payload size. VNET_HW_INTERFACE_FLAG_SUPPORTS_GSO determines the egress packet processing in interface-output for such packets: When the flag is set, they are sent out almost as usual (just taking care to set the vnet header for virtio). When the flag is not enabled (the case for most interfaces), the egress path performs the re-segmentation such that the L4 payload of the transmitted packets equals gso_size. The operations in the datapath are enabled only when there is at least one GSO-compatible interface in the system - this is done by tracking the count in interface_main.gso_interface_count. This way the impact of conditional checks for the setups that do not use GSO is minimized. "show tap" CLI shows the state of the GSO flag on the interface, and the total count of GSO-enabled interfaces (which is used to enable the GSO-related processing in the packet path). This commit lacks IPv6 extension header traversal support of any kind - the L4 payload is assumed to follow the IPv6 header. Also it performs the offloads only for TCP (TSO - TCP segmentation offload). The UDP fragmentation offload (UFO) is not part of it. For debug purposes it also adds the debug CLI: "set tap gso {<interface> | sw_if_index <sw_idx>} <enable|disable>" Change-Id: Ifd562db89adcc2208094b3d1032cee8c307aaef9 Signed-off-by: Andrew Yourtchenko <ayourtch@gmail.com>
2018-10-12 16:09:22 +02:00
VNET_INTERFACE_OUTPUT_ERROR_NO_BUFFERS_FOR_GSO,
VNET_INTERFACE_OUTPUT_ERROR_UNHANDLED_GSO_TYPE,
} vnet_interface_output_error_t;
/* Format for interface output traces. */
u8 *format_vnet_interface_output_trace (u8 * s, va_list * va);
serialize_function_t serialize_vnet_interface_state,
unserialize_vnet_interface_state;
#endif /* included_vnet_interface_funcs_h */
/*
* fd.io coding-style-patch-verification: ON
*
* Local Variables:
* eval: (c-set-style "gnu")
* End:
*/