Files
vpp/src/plugins/dev_ena/rx_node.c
Damjan Marion 2d725c6128 ena: Amazon Elastic Network Adapter (ENA) native driver
Type: feature
Change-Id: Icd9de05f2cbac0e5a6dfb1f1414f21dc4b893104
Signed-off-by: Damjan Marion <damarion@cisco.com>
2023-11-13 19:05:17 +00:00

458 lines
13 KiB
C

/* SPDX-License-Identifier: Apache-2.0
* Copyright (c) 2023 Cisco Systems, Inc.
*/
#include <vnet/vnet.h>
#include <vnet/dev/dev.h>
#include <vnet/ethernet/ethernet.h>
#include <vppinfra/vector/mask_compare.h>
#include <vppinfra/vector/compress.h>
#include <dev_ena/ena.h>
#include <dev_ena/ena_inlines.h>
#define ENA_RX_REFILL_BATCH 32
typedef struct
{
u16 phase_bit;
u16 size;
u32 mask;
ena_rx_cdesc_status_t st_or;
ena_rx_cdesc_status_t st_and;
u16 *comp_sqe_indices;
u32 *sq_buffer_indices;
} ena_rx_ctx_t;
static_always_inline void
ena_device_input_status_to_flags (ena_rx_cdesc_status_t *statuses, u32 *flags,
u32 n_desc, vlib_frame_bitmap_t first_bmp,
int maybe_chained)
{
const ena_rx_cdesc_status_t mask_first = { .first = 1 },
match_first1 = { .first = 1 };
const ena_rx_cdesc_status_t mask_last = { .last = 1 },
match_last0 = { .last = 0 };
const ena_rx_cdesc_status_t mask_l4_csum = { .ipv4_frag = 1,
.l4_csum_checked = 1,
.l4_csum_err = 1 },
match_l4_csum_ok = { .l4_csum_checked = 1 };
clib_memset_u32 (statuses + n_desc, 0, 8);
#if defined(CLIB_HAVE_VEC128)
#if defined(CxLIB_HAVE_VEC512)
#define N 16
#define u32xN u32x16
#define u32xNu u32x16u
#define u32xN_splat u32x16_splat
#elif defined(CxLIB_HAVE_VEC256)
#define N 8
#define u32xN u32x8
#define u32xNu u32x8u
#define u32xN_splat u32x8_splat
#else
#define N 4
#define u32xN u32x4
#define u32xNu u32x4u
#define u32xN_splat u32x4_splat
#endif
const u32xN st_mask_first = u32xN_splat (mask_first.as_u32);
const u32xN st_match_first1 = u32xN_splat (match_first1.as_u32);
const u32xN st_mask_last = u32xN_splat (mask_last.as_u32);
const u32xN st_match_last0 = u32xN_splat (match_last0.as_u32);
const u32xN st_mask_l4_csum = u32xN_splat (mask_l4_csum.as_u32);
const u32xN st_match_l4_csum_ok = u32xN_splat (match_l4_csum_ok.as_u32);
const u32xN f_total_len_valid = u32xN_splat (VLIB_BUFFER_TOTAL_LENGTH_VALID);
const u32xN f_next_preset = u32xN_splat (VLIB_BUFFER_NEXT_PRESENT);
const u32xN f_l4_csum = u32xN_splat (VNET_BUFFER_F_L4_CHECKSUM_CORRECT |
VNET_BUFFER_F_L4_CHECKSUM_COMPUTED);
for (u32 i = 0; i < round_pow2 (n_desc, 2 * N); i += 2 * N)
{
uword msk = 0;
u32xN f0, f1, r0, r1;
u32xN s0 = ((u32xNu *) (statuses + i))[0];
u32xN s1 = ((u32xNu *) (statuses + i))[1];
r0 = (s0 & st_mask_first) == st_match_first1;
r1 = (s1 & st_mask_first) == st_match_first1;
f0 = r0 & f_total_len_valid;
f1 = r1 & f_total_len_valid;
if (maybe_chained)
{
#if defined(CxLIB_HAVE_VEC512)
u64 msb_mask = 0x1111111111111111;
msk = bit_extract_u64 (u8x64_msb_mask ((u8x64) r0), msb_mask);
msk |= bit_extract_u64 (u8x64_msb_mask ((u8x64) r1), msb_mask) << 16;
#elif defined(CxLIB_HAVE_VEC256)
msk = u8x32_msb_mask ((u8x32) r0);
msk |= (u64) u8x32_msb_mask ((u8x32) r1) << 32;
msk = bit_extract_u64 (msk, 0x1111111111111111);
#else
msk = u8x16_msb_mask ((u8x16) r0);
msk |= (u32) u8x16_msb_mask ((u8x16) r1) << 16;
msk = bit_extract_u32 (msk, 0x11111111);
#endif
first_bmp[i / uword_bits] |= msk << (i % uword_bits);
}
f0 |= ((s0 & st_mask_last) == st_match_last0) & f_next_preset;
f1 |= ((s1 & st_mask_last) == st_match_last0) & f_next_preset;
f0 |= ((s0 & st_mask_l4_csum) == st_match_l4_csum_ok) & f_l4_csum;
f1 |= ((s1 & st_mask_l4_csum) == st_match_l4_csum_ok) & f_l4_csum;
((u32xNu *) (flags + i))[0] = f0;
((u32xNu *) (flags + i))[1] = f1;
}
#else
while (n_left)
{
u16 f = 0;
ena_rx_cdesc_status_t st = statuses++[0];
if ((st.as_u32 & mask_first.as_u32) == match_first1.as_u32)
f |= VLIB_BUFFER_TOTAL_LENGTH_VALID;
if ((st.as_u32 & mask_last.as_u32) == match_last0.as_u32)
f |= VLIB_BUFFER_NEXT_PRESENT;
if ((st.as_u32 & mask_l4_csum.as_u32) == match_l4_csum_ok.as_u32)
f |= VNET_BUFFER_F_L4_CHECKSUM_COMPUTED |
VNET_BUFFER_F_L4_CHECKSUM_CORRECT;
flags++[0] = f;
n_left--;
}
#endif
}
static_always_inline u16
ena_device_input_cq_dequeue_no_wrap (ena_rx_ctx_t *ctx, ena_rxq_t *q,
ena_rx_cdesc_status_t *statuses,
u16 *lengths, u16 *csi)
{
u32 next = q->cq_next;
ena_rx_cdesc_t *cqes = q->cqes;
u32 phase = (next & ctx->size << 1) != 0;
u16 index = next & ctx->mask;
ena_rx_cdesc_t *cd = cqes + index;
ena_rx_cdesc_status_t st;
u32 n_to_check, i = 0;
st = cd->status;
if (st.phase == phase)
return 0;
n_to_check = clib_min (VLIB_FRAME_SIZE, ctx->size - index);
ctx->st_or.as_u32 |= st.as_u32;
ctx->st_and.as_u32 &= st.as_u32;
statuses[i] = st;
lengths[i] = cd->length;
csi[i] = cd->req_id;
i++;
cd++;
more:
for (st = cd->status; i < n_to_check && st.phase != phase;
i++, st = (++cd)->status)
{
ctx->st_or.as_u32 |= st.as_u32;
ctx->st_and.as_u32 &= st.as_u32;
statuses[i] = st;
lengths[i] = cd->length;
csi[i] = cd->req_id;
}
if (i == n_to_check)
{
n_to_check = VLIB_FRAME_SIZE - n_to_check;
if (n_to_check)
{
phase ^= 1;
cd = cqes;
goto more;
}
}
/* revert incomplete */
if (PREDICT_FALSE (statuses[i - 1].last == 0))
{
i--;
while (i && statuses[i - 1].last == 0)
i--;
}
return i;
}
static_always_inline void
ena_device_input_refill (vlib_main_t *vm, ena_rx_ctx_t *ctx,
vnet_dev_rx_queue_t *rxq, int use_va)
{
ena_rxq_t *q = vnet_dev_get_rx_queue_data (rxq);
const u64x2 flip_phase = (ena_rx_desc_t){ .lo.phase = 1 }.as_u64x2;
u32 buffer_indices[ENA_RX_REFILL_BATCH];
uword dma_addr[ENA_RX_REFILL_BATCH];
u32 n_alloc, n_compl_sqes = q->n_compl_sqes;
u16 *csi = ctx->comp_sqe_indices;
ena_rx_desc_t *sqes = q->sqes;
while (n_compl_sqes > 0)
{
n_alloc = vlib_buffer_alloc_from_pool (
vm, buffer_indices, clib_min (ENA_RX_REFILL_BATCH, n_compl_sqes),
vnet_dev_get_rx_queue_buffer_pool_index (rxq));
if (PREDICT_FALSE (n_alloc == 0))
break;
vlib_get_buffers_with_offset (vm, buffer_indices, (void **) dma_addr,
ENA_RX_REFILL_BATCH,
STRUCT_OFFSET_OF (vlib_buffer_t, data));
if (!use_va)
for (u32 i = 0; i < n_alloc; i++)
dma_addr[i] = vlib_physmem_get_pa (vm, (void *) dma_addr[i]);
for (u32 i = 0; i < n_alloc; i++)
{
u16 slot = csi[i];
u64x2 r = sqes[slot].as_u64x2 ^ flip_phase;
ctx->sq_buffer_indices[slot] = buffer_indices[i];
r[1] = dma_addr[i];
sqes[slot].as_u64x2 = r; /* write SQE as single 16-byte store */
}
csi += n_alloc;
n_compl_sqes -= n_alloc;
}
if (n_compl_sqes == q->n_compl_sqes)
return;
q->sq_next += q->n_compl_sqes - n_compl_sqes;
__atomic_store_n (q->sq_db, q->sq_next, __ATOMIC_RELEASE);
if (PREDICT_FALSE (n_compl_sqes))
clib_memmove (ctx->comp_sqe_indices, csi, n_compl_sqes * sizeof (csi[0]));
q->n_compl_sqes = n_compl_sqes;
}
static_always_inline uword
ena_device_input_inline (vlib_main_t *vm, vlib_node_runtime_t *node,
vnet_dev_rx_queue_t *rxq)
{
ena_rxq_t *q = vnet_dev_get_rx_queue_data (rxq);
vnet_dev_port_t *port = rxq->port;
vnet_main_t *vnm = vnet_get_main ();
vlib_buffer_t *buffers[VLIB_FRAME_SIZE], **b;
ena_rx_cdesc_status_t statuses[VLIB_FRAME_SIZE + 8];
u16 lengths[VLIB_FRAME_SIZE + 8], *l;
u32 flags[VLIB_FRAME_SIZE + 8], *f;
u16 *csi;
uword n_rx_packets = 0, n_rx_bytes = 0;
vlib_frame_bitmap_t head_bmp = {};
u32 sw_if_index = port->intf.sw_if_index;
u32 hw_if_index = port->intf.hw_if_index;
u32 n_trace, n_deq, n_left;
u32 cq_next = q->cq_next;
u32 next_index = rxq->next_index;
vlib_frame_t *next_frame;
vlib_buffer_template_t bt = rxq->buffer_template;
u32 *bi;
int maybe_chained;
ASSERT (count_set_bits (rxq->size) == 1);
ena_rx_ctx_t ctx = {
.size = rxq->size,
.mask = rxq->size - 1,
.st_and.as_u32 = ~0,
.comp_sqe_indices = q->compl_sqe_indices,
.sq_buffer_indices = q->buffer_indices,
};
/* we may have completed SQE indices from previous run */
csi = ctx.comp_sqe_indices + q->n_compl_sqes;
n_deq =
ena_device_input_cq_dequeue_no_wrap (&ctx, q, statuses, lengths, csi);
if (n_deq == 0)
goto refill;
q->n_compl_sqes += n_deq;
maybe_chained = ctx.st_and.first && ctx.st_and.last ? 0 : 1;
next_frame =
vlib_get_next_frame_internal (vm, node, next_index, /* new frame */ 1);
bi = vlib_frame_vector_args (next_frame);
/* move buffer indices from the ring */
for (u32 i = 0; i < n_deq; i++)
{
u32 slot = csi[i];
bi[i] = ctx.sq_buffer_indices[slot];
ctx.sq_buffer_indices[slot] = VLIB_BUFFER_INVALID_INDEX;
}
vlib_get_buffers (vm, bi, buffers, n_deq);
if (PREDICT_FALSE (maybe_chained))
ena_device_input_status_to_flags (statuses, flags, n_deq, head_bmp, 1);
else
ena_device_input_status_to_flags (statuses, flags, n_deq, head_bmp, 0);
for (b = buffers, l = lengths, f = flags, n_left = n_deq; n_left >= 8;
b += 4, f += 4, l += 4, n_left -= 4)
{
clib_prefetch_store (b[4]);
clib_prefetch_store (b[5]);
clib_prefetch_store (b[6]);
clib_prefetch_store (b[7]);
b[0]->template = bt;
n_rx_bytes += b[0]->current_length = l[0];
b[0]->flags = f[0];
b[1]->template = bt;
n_rx_bytes += b[1]->current_length = l[1];
b[1]->flags = f[1];
b[2]->template = bt;
n_rx_bytes += b[2]->current_length = l[2];
b[2]->flags = f[2];
b[3]->template = bt;
n_rx_bytes += b[3]->current_length = l[3];
b[3]->flags = f[3];
}
for (; n_left > 0; b += 1, f += 1, l += 1, n_left -= 1)
{
b[0]->template = bt;
n_rx_bytes += b[0]->current_length = l[0];
b[0]->flags = f[0];
}
if (maybe_chained)
{
vlib_buffer_t *hb = 0;
vlib_frame_bitmap_t tail_buf_bmp = {};
u32 i, total_len = 0, head_flags = 0, tail_flags = 0;
n_rx_packets = vlib_frame_bitmap_count_set_bits (head_bmp);
vlib_frame_bitmap_init (tail_buf_bmp, n_deq);
vlib_frame_bitmap_xor (tail_buf_bmp, head_bmp);
foreach_vlib_frame_bitmap_set_bit_index (i, tail_buf_bmp)
{
vlib_buffer_t *pb = buffers[i - 1];
/* only store opertations here */
pb->next_buffer = bi[i];
if (vlib_frame_bitmap_is_bit_set (tail_buf_bmp, i - 1) == 0)
{
if (hb)
{
hb->total_length_not_including_first_buffer = total_len;
/* tail descriptor contains protocol info so we need to
* combine head and tail buffer flags */
hb->flags = head_flags | tail_flags;
}
head_flags = flags[i - 1];
total_len = 0;
hb = pb;
}
total_len += lengths[i];
tail_flags = flags[i];
}
hb->total_length_not_including_first_buffer = total_len;
hb->flags = head_flags | tail_flags;
}
else
n_rx_packets = n_deq;
/* packet tracing */
if (PREDICT_FALSE ((n_trace = vlib_get_trace_count (vm, node))))
{
u32 i;
if (!maybe_chained)
vlib_frame_bitmap_init (head_bmp, n_deq);
foreach_vlib_frame_bitmap_set_bit_index (i, head_bmp)
{
vlib_buffer_t *b = buffers[i];
if (vlib_trace_buffer (vm, node, next_index, b, 0))
{
u32 j = i;
ena_rx_trace_t *tr = vlib_add_trace (vm, node, b, sizeof (*tr));
tr->next_index = next_index;
tr->qid = rxq->queue_id;
tr->hw_if_index = hw_if_index;
tr->n_desc = 1;
tr->length = lengths[i];
tr->req_id = csi[i];
tr->status = statuses[i];
while (statuses[j].last == 0)
{
j++;
tr->n_desc++;
tr->length += lengths[j];
}
tr->status = statuses[j];
if (-n_trace)
goto trace_done;
}
}
trace_done:
vlib_set_trace_count (vm, node, n_trace);
}
if (PREDICT_FALSE (maybe_chained))
clib_compress_u32 (bi, bi, head_bmp, n_deq);
if (PREDICT_TRUE (next_index == VNET_DEVICE_INPUT_NEXT_ETHERNET_INPUT))
{
ethernet_input_frame_t *ef;
next_frame->flags = ETH_INPUT_FRAME_F_SINGLE_SW_IF_IDX;
ef = vlib_frame_scalar_args (next_frame);
ef->sw_if_index = sw_if_index;
ef->hw_if_index = hw_if_index;
if (ctx.st_or.l3_csum_err == 0)
next_frame->flags |= ETH_INPUT_FRAME_F_IP4_CKSUM_OK;
vlib_frame_no_append (next_frame);
}
vlib_put_next_frame (vm, node, next_index, VLIB_FRAME_SIZE - n_rx_packets);
vlib_increment_combined_counter (
vnm->interface_main.combined_sw_if_counters + VNET_INTERFACE_COUNTER_RX,
vm->thread_index, hw_if_index, n_rx_packets, n_rx_bytes);
q->cq_next = cq_next + n_deq;
refill:
if (rxq->port->dev->va_dma)
ena_device_input_refill (vm, &ctx, rxq, 1);
else
ena_device_input_refill (vm, &ctx, rxq, 0);
return n_rx_packets;
}
VNET_DEV_NODE_FN (ena_rx_node)
(vlib_main_t *vm, vlib_node_runtime_t *node, vlib_frame_t *frame)
{
u32 n_rx = 0;
foreach_vnet_dev_rx_queue_runtime (rxq, node)
n_rx += ena_device_input_inline (vm, node, rxq);
return n_rx;
}