import math import numpy as np from keras_core import backend from keras_core import operations as ops from keras_core.api_export import keras_core_export from keras_core.backend import random from keras_core.initializers.initializer import Initializer from keras_core.saving import serialization_lib @keras_core_export("keras_core.initializers.RandomNormal") class RandomNormal(Initializer): """Random normal initializer. Draws samples from a normal distribution for given parameters. Examples: >>> # Standalone usage: >>> initializer = RandomNormal(mean=0.0, stddev=1.0) >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = RandomNormal(mean=0.0, stddev=1.0) >>> layer = Dense(3, kernel_initializer=initializer) Args: mean: A python scalar or a scalar keras tensor. Mean of the random values to generate. stddev: A python scalar or a scalar keras tensor. Standard deviation of the random values to generate. seed: A Python integer or instance of `keras_core.backend.SeedGenerator`. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or `None` (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of `keras_core.backend.SeedGenerator`. """ def __init__(self, mean=0.0, stddev=0.05, seed=None): self.mean = mean self.stddev = stddev self._init_seed = seed self.seed = seed or random.make_default_seed() super().__init__() def __call__(self, shape, dtype=None): return random.normal( shape=shape, mean=self.mean, stddev=self.stddev, seed=self.seed, dtype=dtype, ) def get_config(self): seed_config = serialization_lib.serialize_keras_object(self._init_seed) return {"mean": self.mean, "stddev": self.stddev, "seed": seed_config} @keras_core_export("keras_core.initializers.TruncatedNormal") class TruncatedNormal(Initializer): """Initializer that generates a truncated normal distribution. The values generated are similar to values from a `RandomNormal` initializer, except that values more than two standard deviations from the mean are discarded and re-drawn. Examples: >>> # Standalone usage: >>> initializer = TruncatedNormal(mean=0., stddev=1.) >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = TruncatedNormal(mean=0., stddev=1.) >>> layer = Dense(3, kernel_initializer=initializer) Args: mean: A python scalar or a scalar keras tensor. Mean of the random values to generate. stddev: A python scalar or a scalar keras tensor. Standard deviation of the random values to generate. seed: A Python integer or instance of `keras_core.backend.SeedGenerator`. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or `None` (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of `keras_core.backend.SeedGenerator`. """ def __init__(self, mean=0.0, stddev=0.05, seed=None): self.mean = mean self.stddev = stddev self._init_seed = seed self.seed = seed or random.make_default_seed() super().__init__() def __call__(self, shape, dtype=None): return random.truncated_normal( shape=shape, mean=self.mean, stddev=self.stddev, seed=self.seed, dtype=dtype, ) def get_config(self): seed_config = serialization_lib.serialize_keras_object(self._init_seed) return {"mean": self.mean, "stddev": self.stddev, "seed": seed_config} @keras_core_export("keras_core.initializers.RandomUniform") class RandomUniform(Initializer): """Random uniform initializer. Draws samples from a uniform distribution for given parameters. Examples: >>> # Standalone usage: >>> initializer = RandomUniform(minval=0.0, maxval=1.0) >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = RandomUniform(minval=0.0, maxval=1.0) >>> layer = Dense(3, kernel_initializer=initializer) Args: minval: A python scalar or a scalar keras tensor. Lower bound of the range of random values to generate (inclusive). maxval: A python scalar or a scalar keras tensor. Upper bound of the range of random values to generate (exclusive). seed: A Python integer or instance of `keras_core.backend.SeedGenerator`. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or `None` (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of `keras_core.backend.SeedGenerator`. """ def __init__(self, minval=-0.05, maxval=0.05, seed=None): self.minval = minval self.maxval = maxval self._init_seed = seed self.seed = seed or random.make_default_seed() super().__init__() def __call__(self, shape, dtype=None): return random.uniform( shape=shape, minval=self.minval, maxval=self.maxval, seed=self.seed, dtype=dtype, ) def get_config(self): seed_config = serialization_lib.serialize_keras_object(self._init_seed) return { "minval": self.minval, "maxval": self.maxval, "seed": seed_config, } @keras_core_export("keras_core.initializers.VarianceScaling") class VarianceScaling(Initializer): """Initializer that adapts its scale to the shape of its input tensors. With `distribution="truncated_normal" or "untruncated_normal"`, samples are drawn from a truncated/untruncated normal distribution with a mean of zero and a standard deviation (after truncation, if used) `stddev = sqrt(scale / n)`, where `n` is: - number of input units in the weight tensor, if `mode="fan_in"` - number of output units, if `mode="fan_out"` - average of the numbers of input and output units, if `mode="fan_avg"` With `distribution="uniform"`, samples are drawn from a uniform distribution within `[-limit, limit]`, where `limit = sqrt(3 * scale / n)`. Examples: >>> # Standalone usage: >>> initializer = VarianceScaling( scale=0.1, mode='fan_in', distribution='uniform') >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = VarianceScaling( scale=0.1, mode='fan_in', distribution='uniform') >>> layer = Dense(3, kernel_initializer=initializer) Args: scale: Scaling factor (positive float). mode: One of `"fan_in"`, `"fan_out"`, `"fan_avg"`. distribution: Random distribution to use. One of `"truncated_normal"`, `"untruncated_normal"`, or `"uniform"`. seed: A Python integer or instance of `keras_core.backend.SeedGenerator`. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or `None` (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of `keras_core.backend.SeedGenerator`. """ def __init__( self, scale=1.0, mode="fan_in", distribution="truncated_normal", seed=None, ): if scale <= 0.0: raise ValueError( "Argument `scale` must be positive float. " f"Received: scale={scale}" ) allowed_modes = {"fan_in", "fan_out", "fan_avg"} if mode not in allowed_modes: raise ValueError( f"Invalid `mode` argument: {mode}. " f"Please use one of {allowed_modes}" ) distribution = distribution.lower() if distribution == "normal": distribution = "truncated_normal" allowed_distributions = { "uniform", "truncated_normal", "untruncated_normal", } if distribution not in allowed_distributions: raise ValueError( f"Invalid `distribution` argument: {distribution}." f"Please use one of {allowed_distributions}" ) self.scale = scale self.mode = mode self.distribution = distribution self._init_seed = seed self.seed = seed or random.make_default_seed() def __call__(self, shape, dtype=None): scale = self.scale fan_in, fan_out = compute_fans(shape) if self.mode == "fan_in": scale /= max(1.0, fan_in) elif self.mode == "fan_out": scale /= max(1.0, fan_out) else: scale /= max(1.0, (fan_in + fan_out) / 2.0) if self.distribution == "truncated_normal": stddev = math.sqrt(scale) / 0.87962566103423978 return random.truncated_normal( shape, mean=0.0, stddev=stddev, dtype=dtype, seed=self.seed ) elif self.distribution == "untruncated_normal": stddev = math.sqrt(scale) return random.normal( shape, mean=0.0, stddev=stddev, dtype=dtype, seed=self.seed ) else: limit = math.sqrt(3.0 * scale) return random.uniform( shape, minval=-limit, maxval=limit, dtype=dtype, seed=self.seed ) def get_config(self): seed_config = serialization_lib.serialize_keras_object(self._init_seed) return { "scale": self.scale, "mode": self.mode, "distribution": self.distribution, "seed": seed_config, } @keras_core_export("keras_core.initializers.GlorotUniform") class GlorotUniform(VarianceScaling): """The Glorot uniform initializer, also called Xavier uniform initializer. Draws samples from a uniform distribution within `[-limit, limit]`, where `limit = sqrt(6 / (fan_in + fan_out))` (`fan_in` is the number of input units in the weight tensor and `fan_out` is the number of output units). Examples: >>> # Standalone usage: >>> initializer = GlorotUniform() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = GlorotUniform() >>> layer = Dense(3, kernel_initializer=initializer) Args: seed: A Python integer or instance of `keras_core.backend.SeedGenerator`. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or `None` (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of `keras_core.backend.SeedGenerator`. Reference: - [Glorot et al., 2010](http://proceedings.mlr.press/v9/glorot10a.html) """ def __init__(self, seed=None): super().__init__( scale=1.0, mode="fan_avg", distribution="uniform", seed=seed ) def get_config(self): return { "seed": serialization_lib.serialize_keras_object(self._init_seed) } @keras_core_export("keras_core.initializers.GlorotNormal") class GlorotNormal(VarianceScaling): """The Glorot normal initializer, also called Xavier normal initializer. Draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(2 / (fan_in + fan_out))` where `fan_in` is the number of input units in the weight tensor and `fan_out` is the number of output units in the weight tensor. Examples: >>> # Standalone usage: >>> initializer = GlorotNormal() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = GlorotNormal() >>> layer = Dense(3, kernel_initializer=initializer) Args: seed: A Python integer or instance of `keras_core.backend.SeedGenerator`. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or `None` (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of `keras_core.backend.SeedGenerator`. Reference: - [Glorot et al., 2010](http://proceedings.mlr.press/v9/glorot10a.html) """ def __init__(self, seed=None): super().__init__( scale=1.0, mode="fan_avg", distribution="truncated_normal", seed=seed, ) def get_config(self): return { "seed": serialization_lib.serialize_keras_object(self._init_seed) } @keras_core_export("keras_core.initializers.LecunNormal") class LecunNormal(VarianceScaling): """Lecun normal initializer. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. Draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(1 / fan_in)` where `fan_in` is the number of input units in the weight tensor. Examples: >>> # Standalone usage: >>> initializer = LecunNormal() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = LecunNormal() >>> layer = Dense(3, kernel_initializer=initializer) Args: seed: A Python integer or instance of `keras_core.backend.SeedGenerator`. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or `None` (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of `keras_core.backend.SeedGenerator`. Reference: - [Klambauer et al., 2017](https://arxiv.org/abs/1706.02515) """ def __init__(self, seed=None): super().__init__( scale=1.0, mode="fan_in", distribution="truncated_normal", seed=seed ) def get_config(self): return { "seed": serialization_lib.serialize_keras_object(self._init_seed) } @keras_core_export("keras_core.initializers.LecunUniform") class LecunUniform(VarianceScaling): """Lecun uniform initializer. Draws samples from a uniform distribution within `[-limit, limit]`, where `limit = sqrt(3 / fan_in)` (`fan_in` is the number of input units in the weight tensor). Examples: >>> # Standalone usage: >>> initializer = LecunUniform() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = LecunUniform() >>> layer = Dense(3, kernel_initializer=initializer) Args: seed: A Python integer or instance of `keras_core.backend.SeedGenerator`. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or `None` (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of `keras_core.backend.SeedGenerator`. Reference: - [Klambauer et al., 2017](https://arxiv.org/abs/1706.02515) """ def __init__(self, seed=None): super().__init__( scale=1.0, mode="fan_in", distribution="uniform", seed=seed ) def get_config(self): return { "seed": serialization_lib.serialize_keras_object(self._init_seed) } @keras_core_export("keras_core.initializers.HeNormal") class HeNormal(VarianceScaling): """He normal initializer. It draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(2 / fan_in)` where `fan_in` is the number of input units in the weight tensor. Examples: >>> # Standalone usage: >>> initializer = HeNormal() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = HeNormal() >>> layer = Dense(3, kernel_initializer=initializer) Args: seed: A Python integer or instance of `keras_core.backend.SeedGenerator`. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or `None` (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of `keras_core.backend.SeedGenerator`. Reference: - [He et al., 2015](https://arxiv.org/abs/1502.01852) """ def __init__(self, seed=None): super().__init__( scale=2.0, mode="fan_in", distribution="truncated_normal", seed=seed ) def get_config(self): return { "seed": serialization_lib.serialize_keras_object(self._init_seed) } @keras_core_export("keras_core.initializers.HeUniform") class HeUniform(VarianceScaling): """He uniform variance scaling initializer. Draws samples from a uniform distribution within `[-limit, limit]`, where `limit = sqrt(6 / fan_in)` (`fan_in` is the number of input units in the weight tensor). Examples: >>> # Standalone usage: >>> initializer = HeUniform() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = HeUniform() >>> layer = Dense(3, kernel_initializer=initializer) Args: seed: A Python integer or instance of `keras_core.backend.SeedGenerator`. Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer or `None` (unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance of `keras_core.backend.SeedGenerator`. Reference: - [He et al., 2015](https://arxiv.org/abs/1502.01852) """ def __init__(self, seed=None): super().__init__( scale=2.0, mode="fan_in", distribution="uniform", seed=seed ) def get_config(self): return { "seed": serialization_lib.serialize_keras_object(self._init_seed) } def compute_fans(shape): """Computes the number of input and output units for a weight shape. Args: shape: Integer shape tuple. Returns: A tuple of integer scalars: `(fan_in, fan_out)`. """ shape = tuple(shape) if len(shape) < 1: # Just to avoid errors for constants. fan_in = fan_out = 1 elif len(shape) == 1: fan_in = fan_out = shape[0] elif len(shape) == 2: fan_in = shape[0] fan_out = shape[1] else: # Assuming convolution kernels (2D, 3D, or more). # kernel shape: (..., input_depth, depth) receptive_field_size = 1 for dim in shape[:-2]: receptive_field_size *= dim fan_in = shape[-2] * receptive_field_size fan_out = shape[-1] * receptive_field_size return int(fan_in), int(fan_out) @keras_core_export( [ "keras_core.initializers.OrthogonalInitializer", "keras_core.initializers.Orthogonal", ] ) class OrthogonalInitializer(Initializer): """Initializer that generates an orthogonal matrix. If the shape of the tensor to initialize is two-dimensional, it is initialized with an orthogonal matrix obtained from the QR decomposition of a matrix of random numbers drawn from a normal distribution. If the matrix has fewer rows than columns then the output will have orthogonal rows. Otherwise, the output will have orthogonal columns. If the shape of the tensor to initialize is more than two-dimensional, a matrix of shape `(shape[0] * ... * shape[n - 2], shape[n - 1])` is initialized, where `n` is the length of the shape vector. The matrix is subsequently reshaped to give a tensor of the desired shape. Examples: >>> # Standalone usage: >>> initializer = keras_core.initializers.Orthogonal() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = keras_core.initializers.Orthogonal() >>> layer = keras_core.layers.Dense(3, kernel_initializer=initializer) Args: gain: Multiplicative factor to apply to the orthogonal matrix. seed: A Python integer. Used to make the behavior of the initializer deterministic. Reference: - [Saxe et al., 2014](https://openreview.net/forum?id=_wzZwKpTDF_9C) """ def __init__(self, gain=1.0, seed=None): self.gain = gain self._init_seed = seed self.seed = seed or random.make_default_seed() def __call__(self, shape, dtype=None): if len(shape) < 2: raise ValueError( "The tensor to initialize must be " "at least two-dimensional. Received: " f"shape={shape} of rank {len(shape)}." ) # Flatten the input shape with the last dimension remaining # its original shape so it works for conv2d num_rows = 1 for dim in shape[:-1]: num_rows *= dim num_cols = shape[-1] flat_shape = (max(num_cols, num_rows), min(num_cols, num_rows)) # Generate a random matrix a = random.normal(flat_shape, seed=self.seed, dtype=dtype) # Compute the qr factorization q, r = np.linalg.qr(a) # Make Q uniform d = np.diag(r) q *= np.sign(d) if num_rows < num_cols: q = np.transpose(q) q = backend.convert_to_tensor(q) return self.gain * ops.reshape(q, shape) def get_config(self): seed_config = serialization_lib.serialize_keras_object(self._init_seed) return {"gain": self.gain, "seed": seed_config}