'''Neural style transfer with Keras. Run the script with: ``` python neural_style_transfer.py path_to_your_base_image.jpg path_to_your_reference.jpg prefix_for_results ``` e.g.: ``` python neural_style_transfer.py img/tuebingen.jpg img/starry_night.jpg results/my_result ``` It is preferable to run this script on GPU, for speed. Example result: https://twitter.com/fchollet/status/686631033085677568 # Details Style transfer consists in generating an image with the same "content" as a base image, but with the "style" of a different picture (typically artistic). This is achieved through the optimization of a loss function that has 3 components: "style loss", "content loss", and "total variation loss": - The total variation loss imposes local spatial continuity between the pixels of the combination image, giving it visual coherence. - The style loss is where the deep learning keeps in --that one is defined using a deep convolutional neural network. Precisely, it consists in a sum of L2 distances between the Gram matrices of the representations of the base image and the style reference image, extracted from different layers of a convnet (trained on ImageNet). The general idea is to capture color/texture information at different spatial scales (fairly large scales --defined by the depth of the layer considered). - The content loss is a L2 distance between the features of the base image (extracted from a deep layer) and the features of the combination image, keeping the generated image close enough to the original one. # References - [A Neural Algorithm of Artistic Style](http://arxiv.org/abs/1508.06576) ''' from __future__ import print_function from keras.preprocessing.image import load_img, img_to_array from scipy.misc import imsave import numpy as np from scipy.optimize import fmin_l_bfgs_b import time import argparse from keras.applications import vgg16 from keras import backend as K parser = argparse.ArgumentParser(description='Neural style transfer with Keras.') parser.add_argument('base_image_path', metavar='base', type=str, help='Path to the image to transform.') parser.add_argument('style_reference_image_path', metavar='ref', type=str, help='Path to the style reference image.') parser.add_argument('result_prefix', metavar='res_prefix', type=str, help='Prefix for the saved results.') args = parser.parse_args() base_image_path = args.base_image_path style_reference_image_path = args.style_reference_image_path result_prefix = args.result_prefix # these are the weights of the different loss components total_variation_weight = 1. style_weight = 1. content_weight = 0.025 # dimensions of the generated picture. img_nrows = 400 img_ncols = 400 assert img_ncols == img_nrows, 'Due to the use of the Gram matrix, width and height must match.' # util function to open, resize and format pictures into appropriate tensors def preprocess_image(image_path): img = load_img(image_path, target_size=(img_nrows, img_ncols)) img = img_to_array(img) img = np.expand_dims(img, axis=0) img = vgg16.preprocess_input(img) return img # util function to convert a tensor into a valid image def deprocess_image(x): if K.image_dim_ordering() == 'th': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # Remove zero-center by mean pixel x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x # get tensor representations of our images base_image = K.variable(preprocess_image(base_image_path)) style_reference_image = K.variable(preprocess_image(style_reference_image_path)) # this will contain our generated image if K.image_dim_ordering() == 'th': combination_image = K.placeholder((1, 3, img_nrows, img_ncols)) else: combination_image = K.placeholder((1, img_nrows, img_ncols, 3)) # combine the 3 images into a single Keras tensor input_tensor = K.concatenate([base_image, style_reference_image, combination_image], axis=0) # build the VGG16 network with our 3 images as input # the model will be loaded with pre-trained ImageNet weights model = vgg16.VGG16(input_tensor=input_tensor, weights='imagenet', include_top=False) print('Model loaded.') # get the symbolic outputs of each "key" layer (we gave them unique names). outputs_dict = dict([(layer.name, layer.output) for layer in model.layers]) # compute the neural style loss # first we need to define 4 util functions # the gram matrix of an image tensor (feature-wise outer product) def gram_matrix(x): assert K.ndim(x) == 3 if K.image_dim_ordering() == 'th': features = K.batch_flatten(x) else: features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1))) gram = K.dot(features, K.transpose(features)) return gram # the "style loss" is designed to maintain # the style of the reference image in the generated image. # It is based on the gram matrices (which capture style) of # feature maps from the style reference image # and from the generated image def style_loss(style, combination): assert K.ndim(style) == 3 assert K.ndim(combination) == 3 S = gram_matrix(style) C = gram_matrix(combination) channels = 3 size = img_nrows * img_ncols return K.sum(K.square(S - C)) / (4. * (channels ** 2) * (size ** 2)) # an auxiliary loss function # designed to maintain the "content" of the # base image in the generated image def content_loss(base, combination): return K.sum(K.square(combination - base)) # the 3rd loss function, total variation loss, # designed to keep the generated image locally coherent def total_variation_loss(x): assert K.ndim(x) == 4 if K.image_dim_ordering() == 'th': a = K.square(x[:, :, :img_nrows-1, :img_ncols-1] - x[:, :, 1:, :img_ncols-1]) b = K.square(x[:, :, :img_nrows-1, :img_ncols-1] - x[:, :, :img_nrows-1, 1:]) else: a = K.square(x[:, :img_nrows-1, :img_ncols-1, :] - x[:, 1:, :img_ncols-1, :]) b = K.square(x[:, :img_nrows-1, :img_ncols-1, :] - x[:, :img_nrows-1, 1:, :]) return K.sum(K.pow(a + b, 1.25)) # combine these loss functions into a single scalar loss = K.variable(0.) layer_features = outputs_dict['block4_conv2'] base_image_features = layer_features[0, :, :, :] combination_features = layer_features[2, :, :, :] loss += content_weight * content_loss(base_image_features, combination_features) feature_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1'] for layer_name in feature_layers: layer_features = outputs_dict[layer_name] style_reference_features = layer_features[1, :, :, :] combination_features = layer_features[2, :, :, :] sl = style_loss(style_reference_features, combination_features) loss += (style_weight / len(feature_layers)) * sl loss += total_variation_weight * total_variation_loss(combination_image) # get the gradients of the generated image wrt the loss grads = K.gradients(loss, combination_image) outputs = [loss] if type(grads) in {list, tuple}: outputs += grads else: outputs.append(grads) f_outputs = K.function([combination_image], outputs) def eval_loss_and_grads(x): if K.image_dim_ordering() == 'th': x = x.reshape((1, 3, img_nrows, img_ncols)) else: x = x.reshape((1, img_nrows, img_ncols, 3)) outs = f_outputs([x]) loss_value = outs[0] if len(outs[1:]) == 1: grad_values = outs[1].flatten().astype('float64') else: grad_values = np.array(outs[1:]).flatten().astype('float64') return loss_value, grad_values # this Evaluator class makes it possible # to compute loss and gradients in one pass # while retrieving them via two separate functions, # "loss" and "grads". This is done because scipy.optimize # requires separate functions for loss and gradients, # but computing them separately would be inefficient. class Evaluator(object): def __init__(self): self.loss_value = None self.grads_values = None def loss(self, x): assert self.loss_value is None loss_value, grad_values = eval_loss_and_grads(x) self.loss_value = loss_value self.grad_values = grad_values return self.loss_value def grads(self, x): assert self.loss_value is not None grad_values = np.copy(self.grad_values) self.loss_value = None self.grad_values = None return grad_values evaluator = Evaluator() # run scipy-based optimization (L-BFGS) over the pixels of the generated image # so as to minimize the neural style loss if K.image_dim_ordering() == 'th': x = np.random.uniform(0, 255, (1, 3, img_nrows, img_ncols)) - 128. else: x = np.random.uniform(0, 255, (1, img_nrows, img_ncols, 3)) - 128. for i in range(10): print('Start of iteration', i) start_time = time.time() x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(), fprime=evaluator.grads, maxfun=20) print('Current loss value:', min_val) # save current generated image img = deprocess_image(x.copy()) fname = result_prefix + '_at_iteration_%d.png' % i imsave(fname, img) end_time = time.time() print('Image saved as', fname) print('Iteration %d completed in %ds' % (i, end_time - start_time))