'''Train a Siamese MLP on pairs of digits from the MNIST dataset. It follows Hadsell-et-al.'06 [1] by computing the Euclidean distance on the output of the shared network and by optimizing the contrastive loss (see paper for mode details). [1] "Dimensionality Reduction by Learning an Invariant Mapping" http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf Gets to 99.5% test accuracy after 20 epochs. 3 seconds per epoch on a Titan X GPU ''' from __future__ import absolute_import from __future__ import print_function import numpy as np np.random.seed(1337) # for reproducibility import random from keras.datasets import mnist from keras.models import Sequential, Model from keras.layers import Dense, Dropout, Input, Lambda from keras.optimizers import SGD, RMSprop from keras import backend as K def euclidean_distance(vects): x, y = vects return K.sqrt(K.sum(K.square(x - y), axis=1, keepdims=True)) def eucl_dist_output_shape(shapes): shape1, shape2 = shapes return shape1 def contrastive_loss(y_true, y_pred): '''Contrastive loss from Hadsell-et-al.'06 http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf ''' margin = 1 return K.mean(y_true * K.square(y_pred) + (1 - y_true) * K.square(K.maximum(margin - y_pred, 0))) def create_pairs(x, digit_indices): '''Positive and negative pair creation. Alternates between positive and negative pairs. ''' pairs = [] labels = [] n = min([len(digit_indices[d]) for d in range(10)]) - 1 for d in range(10): for i in range(n): z1, z2 = digit_indices[d][i], digit_indices[d][i+1] pairs += [[x[z1], x[z2]]] inc = random.randrange(1, 10) dn = (d + inc) % 10 z1, z2 = digit_indices[d][i], digit_indices[dn][i] pairs += [[x[z1], x[z2]]] labels += [1, 0] return np.array(pairs), np.array(labels) def create_base_network(input_dim): '''Base network to be shared (eq. to feature extraction). ''' seq = Sequential() seq.add(Dense(128, input_shape=(input_dim,), activation='relu')) seq.add(Dropout(0.1)) seq.add(Dense(128, activation='relu')) seq.add(Dropout(0.1)) seq.add(Dense(128, activation='relu')) return seq def compute_accuracy(predictions, labels): '''Compute classification accuracy with a fixed threshold on distances. ''' return labels[predictions.ravel() < 0.5].mean() # the data, shuffled and split between train and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(60000, 784) X_test = X_test.reshape(10000, 784) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 input_dim = 784 nb_epoch = 20 # create training+test positive and negative pairs digit_indices = [np.where(y_train == i)[0] for i in range(10)] tr_pairs, tr_y = create_pairs(X_train, digit_indices) digit_indices = [np.where(y_test == i)[0] for i in range(10)] te_pairs, te_y = create_pairs(X_test, digit_indices) # network definition base_network = create_base_network(input_dim) input_a = Input(shape=(input_dim,)) input_b = Input(shape=(input_dim,)) # because we re-use the same instance `base_network`, # the weights of the network # will be shared across the two branches processed_a = base_network(input_a) processed_b = base_network(input_b) distance = Lambda(euclidean_distance, output_shape=eucl_dist_output_shape)([processed_a, processed_b]) model = Model(input=[input_a, input_b], output=distance) # train rms = RMSprop() model.compile(loss=contrastive_loss, optimizer=rms) model.fit([tr_pairs[:, 0], tr_pairs[:, 1]], tr_y, validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y), batch_size=128, nb_epoch=nb_epoch) # compute final accuracy on training and test sets pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]]) tr_acc = compute_accuracy(pred, tr_y) pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]]) te_acc = compute_accuracy(pred, te_y) print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc)) print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))