'''Train a Siamese MLP on pairs of digits from the MNIST dataset. It follows Hadsell-et-al.'06 [1] by computing the Euclidean distance on the output of the shared network and by optimizing the contrastive loss (see paper for mode details). [1] "Dimensionality Reduction by Learning an Invariant Mapping" http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf Gets to 99.5% test accuracy after 20 epochs. 3 seconds per epoch on a Titan X GPU ''' from __future__ import absolute_import from __future__ import print_function import numpy as np import random from keras.datasets import mnist from keras.models import Sequential, Model from keras.layers import Dense, Dropout, Input, Lambda from keras.optimizers import RMSprop from keras import backend as K def euclidean_distance(vects): x, y = vects return K.sqrt(K.sum(K.square(x - y), axis=1, keepdims=True)) def eucl_dist_output_shape(shapes): shape1, shape2 = shapes return (shape1[0], 1) def contrastive_loss(y_true, y_pred): '''Contrastive loss from Hadsell-et-al.'06 http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf ''' margin = 1 return K.mean(y_true * K.square(y_pred) + (1 - y_true) * K.square(K.maximum(margin - y_pred, 0))) def create_pairs(x, digit_indices): '''Positive and negative pair creation. Alternates between positive and negative pairs. ''' pairs = [] labels = [] n = min([len(digit_indices[d]) for d in range(10)]) - 1 for d in range(10): for i in range(n): z1, z2 = digit_indices[d][i], digit_indices[d][i + 1] pairs += [[x[z1], x[z2]]] inc = random.randrange(1, 10) dn = (d + inc) % 10 z1, z2 = digit_indices[d][i], digit_indices[dn][i] pairs += [[x[z1], x[z2]]] labels += [1, 0] return np.array(pairs), np.array(labels) def create_base_network(input_dim): '''Base network to be shared (eq. to feature extraction). ''' seq = Sequential() seq.add(Dense(128, input_shape=(input_dim,), activation='relu')) seq.add(Dropout(0.1)) seq.add(Dense(128, activation='relu')) seq.add(Dropout(0.1)) seq.add(Dense(128, activation='relu')) return seq def compute_accuracy(predictions, labels): '''Compute classification accuracy with a fixed threshold on distances. ''' return labels[predictions.ravel() < 0.5].mean() # the data, shuffled and split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_test = x_test.reshape(10000, 784) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 input_dim = 784 epochs = 20 # create training+test positive and negative pairs digit_indices = [np.where(y_train == i)[0] for i in range(10)] tr_pairs, tr_y = create_pairs(x_train, digit_indices) digit_indices = [np.where(y_test == i)[0] for i in range(10)] te_pairs, te_y = create_pairs(x_test, digit_indices) # network definition base_network = create_base_network(input_dim) input_a = Input(shape=(input_dim,)) input_b = Input(shape=(input_dim,)) # because we re-use the same instance `base_network`, # the weights of the network # will be shared across the two branches processed_a = base_network(input_a) processed_b = base_network(input_b) distance = Lambda(euclidean_distance, output_shape=eucl_dist_output_shape)([processed_a, processed_b]) model = Model([input_a, input_b], distance) # train rms = RMSprop() model.compile(loss=contrastive_loss, optimizer=rms) model.fit([tr_pairs[:, 0], tr_pairs[:, 1]], tr_y, batch_size=128, epochs=epochs, validation_data=([te_pairs[:, 0], te_pairs[:, 1]], te_y)) # compute final accuracy on training and test sets pred = model.predict([tr_pairs[:, 0], tr_pairs[:, 1]]) tr_acc = compute_accuracy(pred, tr_y) pred = model.predict([te_pairs[:, 0], te_pairs[:, 1]]) te_acc = compute_accuracy(pred, te_y) print('* Accuracy on training set: %0.2f%%' % (100 * tr_acc)) print('* Accuracy on test set: %0.2f%%' % (100 * te_acc))