'''Trains a LSTM on the IMDB sentiment classification task. The dataset is actually too small for LSTM to be of any advantage compared to simpler, much faster methods such as TF-IDF + LogReg. Notes: - RNNs are tricky. Choice of batch size is important, choice of loss and optimizer is critical, etc. Some configurations won't converge. - LSTM loss decrease patterns during training can be quite different from what you see with CNNs/MLPs/etc. ''' from __future__ import print_function import numpy as np np.random.seed(1337) # for reproducibility from keras.preprocessing import sequence from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Embedding from keras.layers import LSTM, SimpleRNN, GRU from keras.datasets import imdb max_features = 20000 maxlen = 80 # cut texts after this number of words (among top max_features most common words) batch_size = 32 print('Loading data...') (X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=max_features) print(len(X_train), 'train sequences') print(len(X_test), 'test sequences') print('Pad sequences (samples x time)') X_train = sequence.pad_sequences(X_train, maxlen=maxlen) X_test = sequence.pad_sequences(X_test, maxlen=maxlen) print('X_train shape:', X_train.shape) print('X_test shape:', X_test.shape) print('Build model...') model = Sequential() model.add(Embedding(max_features, 128, dropout=0.2)) model.add(LSTM(128, dropout_W=0.2, dropout_U=0.2)) # try using a GRU instead, for fun model.add(Dense(1)) model.add(Activation('sigmoid')) # try using different optimizers and different optimizer configs model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) print('Train...') model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=15, validation_data=(X_test, y_test)) score, acc = model.evaluate(X_test, y_test, batch_size=batch_size) print('Test score:', score) print('Test accuracy:', acc)