'''Neural style transfer with Keras. Before running this script, download the weights for the VGG16 model at: https://drive.google.com/file/d/0Bz7KyqmuGsilT0J5dmRCM0ROVHc/view?usp=sharing (source: https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3) and make sure the variable `weights_path` in this script matches the location of the file. Run the script with: ``` python neural_style_transfer.py path_to_your_base_image.jpg path_to_your_reference.jpg prefix_for_results ``` e.g.: ``` python neural_style_transfer.py img/tuebingen.jpg img/starry_night.jpg results/my_result ``` It is preferrable to run this script on GPU, for speed. If running on CPU, prefer the TensorFlow backend (much faster). Example result: https://twitter.com/fchollet/status/686631033085677568 # Details Style transfer consists in generating an image with the same "content" as a base image, but with the "style" of a different picture (typically artistic). This is achieved through the optimization of a loss function that has 3 components: "style loss", "content loss", and "total variation loss": - The total variation loss imposes local spatial continuity between the pixels of the combination image, giving it visual coherence. - The style loss is where the deep learning keeps in --that one is defined using a deep convolutional neural network. Precisely, it consists in a sum of L2 distances betwen the Gram matrices of the representations of the base image and the style reference image, extracted from different layers of a convnet (trained on ImageNet). The general idea is to capture color/texture information at different spatial scales (fairly large scales --defined by the depth of the layer considered). - The content loss is a L2 distance between the features of the base image (extracted from a deep layer) and the features of the combination image, keeping the generated image close enough to the original one. # References - [A Neural Algorithm of Artistic Style](http://arxiv.org/abs/1508.06576) ''' from __future__ import print_function from scipy.misc import imread, imresize, imsave import numpy as np from scipy.optimize import fmin_l_bfgs_b import time import os import argparse import h5py from keras.models import Sequential from keras.layers.convolutional import Convolution2D, ZeroPadding2D, MaxPooling2D from keras import backend as K parser = argparse.ArgumentParser(description='Neural style transfer with Keras.') parser.add_argument('base_image_path', metavar='base', type=str, help='Path to the image to transform.') parser.add_argument('style_reference_image_path', metavar='ref', type=str, help='Path to the style reference image.') parser.add_argument('result_prefix', metavar='res_prefix', type=str, help='Prefix for the saved results.') args = parser.parse_args() base_image_path = args.base_image_path style_reference_image_path = args.style_reference_image_path result_prefix = args.result_prefix weights_path = 'vgg16_weights.h5' # these are the weights of the different loss components total_variation_weight = 1. style_weight = 1. content_weight = 0.025 # dimensions of the generated picture. img_width = 400 img_height = 400 assert img_height == img_width, 'Due to the use of the Gram matrix, width and height must match.' # util function to open, resize and format pictures into appropriate tensors def preprocess_image(image_path): img = imresize(imread(image_path), (img_width, img_height)) img = img.transpose((2, 0, 1)).astype('float64') img = np.expand_dims(img, axis=0) return img # util function to convert a tensor into a valid image def deprocess_image(x): x = x.transpose((1, 2, 0)) x = np.clip(x, 0, 255).astype('uint8') return x # get tensor representations of our images base_image = K.variable(preprocess_image(base_image_path)) style_reference_image = K.variable(preprocess_image(style_reference_image_path)) # this will contain our generated image combination_image = K.placeholder((1, 3, img_width, img_height)) # combine the 3 images into a single Keras tensor input_tensor = K.concatenate([base_image, style_reference_image, combination_image], axis=0) # build the VGG16 network with our 3 images as input first_layer = ZeroPadding2D((1, 1), input_shape=(3, img_width, img_height)) first_layer.input = input_tensor model = Sequential() model.add(first_layer) model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_1')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_1')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(128, 3, 3, activation='relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_1')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_1')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_2')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_1')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) # load the weights of the VGG16 networks # (trained on ImageNet, won the ILSVRC competition in 2014) # note: when there is a complete match between your model definition # and your weight savefile, you can simply call model.load_weights(filename) assert os.path.exists(weights_path), 'Model weights not found (see "weights_path" variable in script).' f = h5py.File(weights_path) for k in range(f.attrs['nb_layers']): if k >= len(model.layers): # we don't look at the last (fully-connected) layers in the savefile break g = f['layer_{}'.format(k)] weights = [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])] model.layers[k].set_weights(weights) f.close() print('Model loaded.') # get the symbolic outputs of each "key" layer (we gave them unique names). outputs_dict = dict([(layer.name, layer.get_output()) for layer in model.layers]) # compute the neural style loss # first we need to define 4 util functions # the gram matrix of an image tensor (feature-wise outer product) def gram_matrix(x): assert K.ndim(x) == 3 features = K.batch_flatten(x) gram = K.dot(features, K.transpose(features)) return gram # the "style loss" is designed to maintain # the style of the reference image in the generated image. # It is based on the gram matrices (which capture style) of # feature maps from the style reference image # and from the generated image def style_loss(style, combination): assert K.ndim(style) == 3 assert K.ndim(combination) == 3 S = gram_matrix(style) C = gram_matrix(combination) channels = 3 size = img_width * img_height return K.sum(K.square(S - C)) / (4. * (channels ** 2) * (size ** 2)) # an auxiliary loss function # designed to maintain the "content" of the # base image in the generated image def content_loss(base, combination): return K.sum(K.square(combination - base)) # the 3rd loss function, total variation loss, # designed to keep the generated image locally coherent def total_variation_loss(x): assert K.ndim(x) == 4 a = K.square(x[:, :, :img_width-1, :img_height-1] - x[:, :, 1:, :img_height-1]) b = K.square(x[:, :, :img_width-1, :img_height-1] - x[:, :, :img_width-1, 1:]) return K.sum(K.pow(a + b, 1.25)) # combine these loss functions into a single scalar loss = K.variable(0.) layer_features = outputs_dict['conv4_2'] base_image_features = layer_features[0, :, :, :] combination_features = layer_features[2, :, :, :] loss += content_weight * content_loss(base_image_features, combination_features) feature_layers = ['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1'] for layer_name in feature_layers: layer_features = outputs_dict[layer_name] style_reference_features = layer_features[1, :, :, :] combination_features = layer_features[2, :, :, :] sl = style_loss(style_reference_features, combination_features) loss += (style_weight / len(feature_layers)) * sl loss += total_variation_weight * total_variation_loss(combination_image) # get the gradients of the generated image wrt the loss grads = K.gradients(loss, combination_image) outputs = [loss] if type(grads) in {list, tuple}: outputs += grads else: outputs.append(grads) f_outputs = K.function([combination_image], outputs) def eval_loss_and_grads(x): x = x.reshape((1, 3, img_width, img_height)) outs = f_outputs([x]) loss_value = outs[0] if len(outs[1:]) == 1: grad_values = outs[1].flatten().astype('float64') else: grad_values = np.array(outs[1:]).flatten().astype('float64') return loss_value, grad_values # this Evaluator class makes it possible # to compute loss and gradients in one pass # while retrieving them via two separate functions, # "loss" and "grads". This is done because scipy.optimize # requires separate functions for loss and gradients, # but computing them separately would be inefficient. class Evaluator(object): def __init__(self): self.loss_value = None self.grads_values = None def loss(self, x): assert self.loss_value is None loss_value, grad_values = eval_loss_and_grads(x) self.loss_value = loss_value self.grad_values = grad_values return self.loss_value def grads(self, x): assert self.loss_value is not None grad_values = np.copy(self.grad_values) self.loss_value = None self.grad_values = None return grad_values evaluator = Evaluator() # run scipy-based optimization (L-BFGS) over the pixels of the generated image # so as to minimize the neural style loss x = np.random.uniform(0, 255, (1, 3, img_width, img_height)) for i in range(10): print('Start of iteration', i) start_time = time.time() x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(), fprime=evaluator.grads, maxfun=20) print('Current loss value:', min_val) # save current generated image img = deprocess_image(x.reshape((3, img_width, img_height))) fname = result_prefix + '_at_iteration_%d.png' % i imsave(fname, img) end_time = time.time() print('Image saved as', fname) print('Iteration %d completed in %ds' % (i, end_time - start_time))