From 37b49492a8064e135770862a11374e7aa9683047 Mon Sep 17 00:00:00 2001 From: Campbell Barton Date: Tue, 28 Jul 2009 05:51:38 +0000 Subject: [PATCH] simple povray render integration. Supports... - camera/lamp/mesh object types - meshes with modifiers applied, normals/uv/vertex colors - materials, reflection, transparency - spot/area/point lamps, samples, raytrace options - scene render size, AA setting Details... - Doesn't need any 3rd party modules. - Runs povray from the subprocess module, updating the image from a TARGA. - Currently no UI panels or support for custom settings. This could be used as an example for other scripts. --- release/io/engine_render_pov.py | 564 ++++++++++++++++++++++++++++++++ 1 file changed, 564 insertions(+) create mode 100644 release/io/engine_render_pov.py diff --git a/release/io/engine_render_pov.py b/release/io/engine_render_pov.py new file mode 100644 index 00000000000..550f9889f6b --- /dev/null +++ b/release/io/engine_render_pov.py @@ -0,0 +1,564 @@ +import bpy + +from math import atan, pi, degrees +import subprocess +import os +import sys +import time + +def write_pov(filename, scene=None, info_callback = None): + file = open(filename, 'w') + + # Only for testing + if not scene: + scene = bpy.data.scenes[0] + + render = scene.render_data + materialTable = {} + + def saneName(name): + name = name.lower() + for ch in ' /\\+=-[]{}().,<>\'":;~!@#$%^&*|?': + name = name.replace(ch, '_') + return name + + def writeMatrix(matrix): + file.write('\tmatrix <%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f>\n' %\ + (matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2]) ) + + def exportCamera(): + camera = scene.camera + matrix = camera.matrix + + # compute resolution + Qsize=float(render.resolution_x)/float(render.resolution_y) + + file.write('camera {\n') + file.write('\tlocation <0, 0, 0>\n') + file.write('\tlook_at <0, 0, -1>\n') + file.write('\tright <%s, 0, 0>\n' % -Qsize) + file.write('\tup <0, 1, 0>\n') + file.write('\tangle %f \n' % (360.0*atan(16.0/camera.data.lens)/pi)) + + file.write('\trotate <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotationPart().toEuler()])) + file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2])) + file.write('}\n') + + + + def exportLamps(lamps): + # Get all lamps + for ob in lamps: + lamp = ob.data + + matrix = ob.matrix + + color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy + + file.write('light_source') + file.write('{\n') + file.write('\t< 0,0,0 >\n') + file.write('\tcolor red %.6f green %.6f blue %.6f\n' % color) + + if lamp.type == 'POINT': # Point Lamp + pass + elif lamp.type == 'SPOT': # Spot + file.write('\tspotlight\n') + + # Falloff is the main radius from the centre line + file.write('\tfalloff %.2f\n' % (lamp.spot_size/2.0) ) # 1 TO 179 FOR BOTH + file.write('\tradius %.6f\n' % ((lamp.spot_size/2.0) * (1-lamp.spot_blend)) ) + + # Blender does not have a tightness equivilent, 0 is most like blender default. + file.write('\ttightness 0\n') # 0:10f + + file.write('\tpoint_at <0, 0, -1>\n') + elif lamp.type == 'AREA': + + size_x = lamp.size + samples_x = lamp.shadow_ray_samples_x + if lamp.shape == 'SQUARE': + size_y = size_x + samples_y = samples_x + else: + size_y = lamp.size_y + samples_y = lamp.shadow_ray_samples_y + + + + file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y)) + if lamp.shadow_ray_sampling_method == 'CONSTANT_JITTERED': + if lamp.jitter: + file.write('\tjitter\n') + else: + file.write('\tadaptive 1\n') + file.write('\tjitter\n') + + if lamp.shadow_method == 'NOSHADOW': + file.write('\tshadowless\n') + + file.write('\tfade_distance %.6f\n' % lamp.distance) + file.write('\tfade_power %d\n' % 1) # Could use blenders lamp quad? + writeMatrix(matrix) + + file.write('}\n') + + def exportMeshs(sel): + def bMat2PovString(material): + povstring = 'finish {' + if world != None: + povstring += 'ambient <%.6f, %.6f, %.6f> ' % tuple([c*material.ambient for c in world.ambient_color]) + + povstring += 'diffuse %.6f ' % material.diffuse_reflection + povstring += 'specular %.6f ' % material.specular_reflection + + + if material.raytrace_mirror.enabled: + #povstring += 'interior { ior %.6f } ' % material.IOR + raytrace_mirror= material.raytrace_mirror + if raytrace_mirror.reflect: + povstring += 'reflection {' + povstring += '<%.6f, %.6f, %.6f>' % tuple(material.mirror_color) # Should ask for ray mirror flag + povstring += 'fresnel 1 falloff %.6f exponent %.6f metallic %.6f} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_fac, raytrace_mirror.reflect) + + + + if material.raytrace_transparency.enabled: + #povstring += 'interior { ior %.6f } ' % material.IOR + pass + + #file.write('\t\troughness %.6f\n' % (material.hard*0.5)) + #file.write('\t\t\tcrand 0.0\n') # Sand granyness + #file.write('\t\t\tmetallic %.6f\n' % material.spec) + #file.write('\t\t\tphong %.6f\n' % material.spec) + #file.write('\t\t\tphong_size %.6f\n' % material.spec) + povstring += 'brilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness + povstring += '}' + #file.write('\t}\n') + return povstring + + + world = scene.world + + # Convert all materials to strings we can access directly per vertex. + for material in bpy.data.materials: + materialTable[material.name] = bMat2PovString(material) + + + ob_num = 0 + + for ob in sel: + ob_num+= 1 + + if ob.type in ('LAMP', 'CAMERA', 'EMPTY'): + continue + + me = ob.data + me_materials= me.materials + + me = ob.create_render_mesh(scene) + + if not me: + continue + + if info_callback: + info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name)) + + #if ob.type!='MESH': + # continue + # me = ob.data + + matrix = ob.matrix + try: uv_layer = me.active_uv_texture.data + except:uv_layer = None + + try: vcol_layer = me.active_vertex_color.data + except:vcol_layer = None + + + def regular_face(f): + fv = f.verts + if fv[3]== 0: + return fv[0], fv[1], fv[2] + return fv[0], fv[1], fv[2], fv[3] + + faces_verts = [regular_face(f) for f in me.faces] + faces_normals = [tuple(f.normal) for f in me.faces] + verts_normals = [tuple(v.normal) for v in me.verts] + + # quads incur an extra face + quadCount = len([f for f in faces_verts if len(f)==4]) + + file.write('mesh2 {\n') + file.write('\tvertex_vectors {\n') + file.write('\t\t%s' % (len(me.verts))) # vert count + for v in me.verts: + file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count + file.write('\n }\n') + + + # Build unique Normal list + uniqueNormals = {} + for fi, f in enumerate(me.faces): + fv = faces_verts[fi] + # [-1] is a dummy index, use a list so we can modify in place + if f.smooth: # Use vertex normals + for v in fv: + key = verts_normals[v] + uniqueNormals[key] = [-1] + else: # Use face normal + key = faces_normals[fi] + uniqueNormals[key] = [-1] + + file.write('\tnormal_vectors {\n') + file.write('\t\t%d' % len(uniqueNormals)) # vert count + idx = 0 + for no, index in uniqueNormals.items(): + file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count + index[0] = idx + idx +=1 + file.write('\n }\n') + + + # Vertex colours + vertCols = {} # Use for material colours also. + + if uv_layer: + # Generate unique UV's + uniqueUVs = {} + + for fi, uv in enumerate(uv_layer): + + if len(faces_verts[fi])==4: + uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4 + else: + uvs = uv.uv1, uv.uv2, uv.uv3 + + for uv in uvs: + uniqueUVs[tuple(uv)] = [-1] + + file.write('\tuv_vectors {\n') + #print unique_uvs + file.write('\t\t%s' % (len(uniqueUVs))) # vert count + idx = 0 + for uv, index in uniqueUVs.items(): + file.write(',\n\t\t<%.6f, %.6f>' % uv) + index[0] = idx + idx +=1 + ''' + else: + # Just add 1 dummy vector, no real UV's + file.write('\t\t1') # vert count + file.write(',\n\t\t<0.0, 0.0>') + ''' + file.write('\n }\n') + + + if me.vertex_colors: + + for fi, f in enumerate(me.faces): + material_index = f.material_index + material = me_materials[material_index] + + if material and material.vertex_color_paint: + + col = vcol_layer[fi] + + if len(faces_verts[fi])==4: + cols = col.color1, col.color2, col.color3, col.color4 + else: + cols = col.color1, col.color2, col.color3 + + for col in cols: + key = col[0], col[1], col[2], material_index # Material index! + vertCols[key] = [-1] + + else: + if material: + diffuse_color = tuple(material.diffuse_color) + key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index + vertCols[key] = [-1] + + + else: + # No vertex colours, so write material colours as vertex colours + for i, material in enumerate(me_materials): + + if material: + diffuse_color = tuple(material.diffuse_color) + key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat + vertCols[key] = [-1] + + + # Vert Colours + file.write('\ttexture_list {\n') + file.write('\t\t%s' % (len(vertCols))) # vert count + idx=0 + for col, index in vertCols.items(): + + if me_materials: + material = me_materials[col[3]] + materialString = materialTable[material.name] + else: + materialString = '' # Dont write anything + + float_col = col[0], col[1], col[2], 1-material.alpha, materialString + #print material.apl + file.write(',\n\t\ttexture { pigment {rgbf<%.6f, %.6f, %.6f, %.6f>}%s}' % float_col) + index[0] = idx + idx+=1 + + file.write( '\n }\n' ) + + # Face indicies + file.write('\tface_indices {\n') + file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count + for fi, f in enumerate(me.faces): + fv = faces_verts[fi] + material_index= f.material_index + if len(fv) == 4: indicies = (0,1,2), (0,2,3) + else: indicies = ((0,1,2),) + + if vcol_layer: + col = vcol_layer[fi] + + if len(fv) == 4: + cols = col.color1, col.color2, col.color3, col.color4 + else: + cols = col.color1, col.color2, col.color3 + + + if not me_materials or me_materials[material_index] == None: # No materials + for i1, i2, i3 in indicies: + file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count + else: + material = me_materials[material_index] + for i1, i2, i3 in indicies: + if me.vertex_colors and material.vertex_color_paint: + # Colour per vertex - vertex colour + + col1 = cols[i1] + col2 = cols[i2] + col3 = cols[i3] + + ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0] + ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0] + ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0] + else: + # Colour per material - flat material colour + diffuse_color= material.diffuse_color + ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0] + + file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count + + + + file.write('\n }\n') + + # normal_indices indicies + file.write('\tnormal_indices {\n') + file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count + for fi, f in enumerate(me.faces): + fv = faces_verts[fi] + if len(fv) == 4: indicies = (0,1,2), (0,2,3) + else: indicies = ((0,1,2),) + + for i1, i2, i3 in indicies: + if f.smooth: + file.write(',\n\t\t<%d,%d,%d>' %\ + (uniqueNormals[verts_normals[fv[i1]]][0],\ + uniqueNormals[verts_normals[fv[i2]]][0],\ + uniqueNormals[verts_normals[fv[i3]]][0])) # vert count + else: + idx = uniqueNormals[faces_normals[fi]][0] + file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count + + + file.write('\n }\n') + + + # normal_indices indicies + + if uv_layer: + file.write('\tuv_indices {\n') + file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count + for f in me.faces: + fv = faces_verts[fi] + + if len(fv) == 4: indicies = (0,1,2), (0,2,3) + else: indicies = ((0,1,2),) + + uv = uv_layer[fi] + if len(faces_verts[fi])==4: + uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4 + else: + uvs = uv.uv1, uv.uv2, uv.uv3 + + for i1, i2, i3 in indicies: + file.write(',\n\t\t<%d,%d,%d>' %\ + (uniqueUVs[tuple(uvs[i1][0:2])][0],\ + uniqueUVs[tuple(uvs[i2][0:2])][0],\ + uniqueUVs[tuple(uvs[i2][0:2])][0])) # vert count + file.write('\n }\n') + + if me.materials: + material = me.materials[0] # dodgy + if material and material.raytrace_transparency.enabled: + file.write('\tinterior { ior %.6f }\n' % material.raytrace_transparency.ior) + + writeMatrix(matrix) + file.write('}\n') + + bpy.data.remove_mesh(me) + + + exportCamera() + #exportMaterials() + sel = scene.objects + lamps = [l for l in sel if l.type == 'LAMP'] + exportLamps(lamps) + exportMeshs(sel) + + file.close() + + +def write_pov_ini(filename_ini, filename_pov, filename_image): + scene = bpy.data.scenes[0] + render = scene.render_data + + x= int(render.resolution_x*render.resolution_percentage*0.01) + y= int(render.resolution_y*render.resolution_percentage*0.01) + + file = open(filename_ini, 'w') + + file.write('Input_File_Name="%s"\n' % filename_pov) + file.write('Output_File_Name="%s"\n' % filename_image) + + file.write('Width=%d\n' % x) + file.write('Height=%d\n' % y) + + # Needed for border render. + ''' + file.write('Start_Column=%d\n' % part.x) + file.write('End_Column=%d\n' % (part.x+part.w)) + + file.write('Start_Row=%d\n' % (part.y)) + file.write('End_Row=%d\n' % (part.y+part.h)) + ''' + + file.write('Display=0\n') + file.write('Pause_When_Done=0\n') + file.write('Output_File_Type=C\n') # TGA, best progressive loading + file.write('Output_Alpha=1\n') + + if render.antialiasing: + aa_mapping = {'OVERSAMPLE_5':2, 'OVERSAMPLE_8':3, 'OVERSAMPLE_11':4, 'OVERSAMPLE_16':5} # method 1 assumed + file.write('Antialias=1\n') + file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples]) + else: + file.write('Antialias=0\n') + + file.close() + + +class PovrayRenderEngine(bpy.types.RenderEngine): + __label__ = "Povray" + DELAY = 0.02 + def _export(self, scene): + import tempfile + + self.temp_file_in = tempfile.mktemp(suffix='.pov') + self.temp_file_out = tempfile.mktemp(suffix='.ppm') + self.temp_file_ini = tempfile.mktemp(suffix='.ini') + + def info_callback(txt): + self.update_stats("", "POVRAY: " + txt) + + write_pov(self.temp_file_in, scene, info_callback) + + def _render(self): + + try: os.remove(self.temp_file_out) # so as not to load the old file + except: pass + + write_pov_ini(self.temp_file_ini, self.temp_file_in, self.temp_file_out) + + print ("***-STARTING-***") + # This works too but means we have to wait until its done + # os.system('povray %s' % self.temp_file_ini) + + self.process = subprocess.Popen(["povray", self.temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE + print ("***-DONE-***") + + def _cleanup(self): + for f in (self.temp_file_in, self.temp_file_ini, self.temp_file_out): + try: os.remove(f) + except: pass + + self.update_stats("", "") + + def render(self, scene): + + self.update_stats("", "POVRAY: Exporting data from Blender") + self._export(scene) + self.update_stats("", "POVRAY: Parsing File") + self._render() + + r = scene.render_data + + # compute resolution + x= int(r.resolution_x*r.resolution_percentage*0.01) + y= int(r.resolution_y*r.resolution_percentage*0.01) + + + + # Wait for the file to be created + while not os.path.exists(self.temp_file_out): + time.sleep(self.DELAY) + + self.update_stats("", "POVRAY: Rendering") + + prev_size = -1 + + def update_image(): + result = self.begin_result(0, 0, x, y) + lay = result.layers[0] + # possible the image wont load early on. + try: lay.rect_from_file(self.temp_file_out, 0, 0) + except: pass + self.end_result(result) + + # Update while povray renders + while True: + + # test if povray exists + if self.process.poll() != None: + update_image(); + break + + # user exit + if self.test_break(): + try: # It might not be running + self.process.terminate() + except: + pass + + break + + # Would be nice to redirect the output + # stdout_value, stderr_value = self.process.communicate() # locks + + + # check if the file updated + new_size = os.path.getsize(self.temp_file_out) + + if new_size != prev_size: + update_image() + prev_size = new_size + + time.sleep(self.DELAY) + + self._cleanup() + + +bpy.types.register(PovrayRenderEngine)