/* * Copyright 2011, Blender Foundation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifdef WITH_OPENCL #include #include #include #include "device.h" #include "device_intern.h" #include "buffers.h" #include "util_foreach.h" #include "util_map.h" #include "util_math.h" #include "util_md5.h" #include "util_opencl.h" #include "util_opengl.h" #include "util_path.h" #include "util_time.h" CCL_NAMESPACE_BEGIN #define CL_MEM_PTR(p) ((cl_mem)(uintptr_t)(p)) static cl_device_type opencl_device_type() { char *device = getenv("CYCLES_OPENCL_TEST"); if(device) { if(strcmp(device, "ALL") == 0) return CL_DEVICE_TYPE_ALL; else if(strcmp(device, "DEFAULT") == 0) return CL_DEVICE_TYPE_DEFAULT; else if(strcmp(device, "CPU") == 0) return CL_DEVICE_TYPE_CPU; else if(strcmp(device, "GPU") == 0) return CL_DEVICE_TYPE_GPU; else if(strcmp(device, "ACCELERATOR") == 0) return CL_DEVICE_TYPE_ACCELERATOR; } return CL_DEVICE_TYPE_ALL; } static bool opencl_kernel_use_debug() { return (getenv("CYCLES_OPENCL_DEBUG") != NULL); } static bool opencl_kernel_use_advanced_shading(const string& platform) { /* keep this in sync with kernel_types.h! */ if(platform == "NVIDIA CUDA") return true; else if(platform == "Apple") return false; else if(platform == "AMD Accelerated Parallel Processing") return false; else if(platform == "Intel(R) OpenCL") return true; return false; } static string opencl_kernel_build_options(const string& platform, const string *debug_src = NULL) { string build_options = " -cl-fast-relaxed-math "; if(platform == "NVIDIA CUDA") build_options += "-D__KERNEL_OPENCL_NVIDIA__ -cl-nv-maxrregcount=32 -cl-nv-verbose "; else if(platform == "Apple") build_options += "-D__KERNEL_OPENCL_APPLE__ -Wno-missing-prototypes "; else if(platform == "AMD Accelerated Parallel Processing") build_options += "-D__KERNEL_OPENCL_AMD__ "; else if(platform == "Intel(R) OpenCL") { build_options += "-D__KERNEL_OPENCL_INTEL_CPU__"; /* options for gdb source level kernel debugging. this segfaults on linux currently */ if(opencl_kernel_use_debug() && debug_src) build_options += "-g -s \"" + *debug_src + "\""; } if(opencl_kernel_use_debug()) build_options += "-D__KERNEL_OPENCL_DEBUG__ "; if(opencl_kernel_use_advanced_shading(platform)) build_options += "-D__KERNEL_OPENCL_NEED_ADVANCED_SHADING__ "; return build_options; } /* thread safe cache for contexts and programs */ class OpenCLCache { struct Slot { thread_mutex *mutex; cl_context context; cl_program program; Slot() : mutex(NULL), context(NULL), program(NULL) {} Slot(const Slot &rhs) : mutex(rhs.mutex) , context(rhs.context) , program(rhs.program) { /* copy can only happen in map insert, assert that */ assert(mutex == NULL); } ~Slot() { delete mutex; mutex = NULL; } }; /* key is combination of platform ID and device ID */ typedef pair PlatformDevicePair; /* map of Slot objects */ typedef map CacheMap; CacheMap cache; thread_mutex cache_lock; /* lazy instantiate */ static OpenCLCache &global_instance() { static OpenCLCache instance; return instance; } OpenCLCache() { } ~OpenCLCache() { /* Intel OpenCL bug raises SIGABRT due to pure virtual call * so this is disabled. It's not necessary to free objects * at process exit anyway. * http://software.intel.com/en-us/forums/topic/370083#comments */ //flush(); } /* lookup something in the cache. If this returns NULL, slot_locker * will be holding a lock for the cache. slot_locker should refer to a * default constructed thread_scoped_lock */ template static T get_something(cl_platform_id platform, cl_device_id device, T Slot::*member, thread_scoped_lock &slot_locker) { assert(platform != NULL); OpenCLCache &self = global_instance(); thread_scoped_lock cache_lock(self.cache_lock); pair ins = self.cache.insert( CacheMap::value_type(PlatformDevicePair(platform, device), Slot())); Slot &slot = ins.first->second; /* create slot lock only while holding cache lock */ if(!slot.mutex) slot.mutex = new thread_mutex; /* need to unlock cache before locking slot, to allow store to complete */ cache_lock.unlock(); /* lock the slot */ slot_locker = thread_scoped_lock(*slot.mutex); /* If the thing isn't cached */ if(slot.*member == NULL) { /* return with the caller's lock holder holding the slot lock */ return NULL; } /* the item was already cached, release the slot lock */ slot_locker.unlock(); return slot.*member; } /* store something in the cache. you MUST have tried to get the item before storing to it */ template static void store_something(cl_platform_id platform, cl_device_id device, T thing, T Slot::*member, thread_scoped_lock &slot_locker) { assert(platform != NULL); assert(device != NULL); assert(thing != NULL); OpenCLCache &self = global_instance(); thread_scoped_lock cache_lock(self.cache_lock); CacheMap::iterator i = self.cache.find(PlatformDevicePair(platform, device)); cache_lock.unlock(); Slot &slot = i->second; /* sanity check */ assert(i != self.cache.end()); assert(slot.*member == NULL); slot.*member = thing; /* unlock the slot */ slot_locker.unlock(); } public: /* see get_something comment */ static cl_context get_context(cl_platform_id platform, cl_device_id device, thread_scoped_lock &slot_locker) { cl_context context = get_something(platform, device, &Slot::context, slot_locker); if(!context) return NULL; /* caller is going to release it when done with it, so retain it */ cl_int ciErr = clRetainContext(context); assert(ciErr == CL_SUCCESS); (void)ciErr; return context; } /* see get_something comment */ static cl_program get_program(cl_platform_id platform, cl_device_id device, thread_scoped_lock &slot_locker) { cl_program program = get_something(platform, device, &Slot::program, slot_locker); if(!program) return NULL; /* caller is going to release it when done with it, so retain it */ cl_int ciErr = clRetainProgram(program); assert(ciErr == CL_SUCCESS); (void)ciErr; return program; } /* see store_something comment */ static void store_context(cl_platform_id platform, cl_device_id device, cl_context context, thread_scoped_lock &slot_locker) { store_something(platform, device, context, &Slot::context, slot_locker); /* increment reference count in OpenCL. * The caller is going to release the object when done with it. */ cl_int ciErr = clRetainContext(context); assert(ciErr == CL_SUCCESS); (void)ciErr; } /* see store_something comment */ static void store_program(cl_platform_id platform, cl_device_id device, cl_program program, thread_scoped_lock &slot_locker) { store_something(platform, device, program, &Slot::program, slot_locker); /* increment reference count in OpenCL. * The caller is going to release the object when done with it. */ cl_int ciErr = clRetainProgram(program); assert(ciErr == CL_SUCCESS); (void)ciErr; } /* discard all cached contexts and programs * the parameter is a temporary workaround. See OpenCLCache::~OpenCLCache */ static void flush() { OpenCLCache &self = global_instance(); thread_scoped_lock cache_lock(self.cache_lock); foreach(CacheMap::value_type &item, self.cache) { if(item.second.program != NULL) clReleaseProgram(item.second.program); if(item.second.context != NULL) clReleaseContext(item.second.context); } self.cache.clear(); } }; class OpenCLDevice : public Device { public: TaskPool task_pool; cl_context cxContext; cl_command_queue cqCommandQueue; cl_platform_id cpPlatform; cl_device_id cdDevice; cl_program cpProgram; cl_kernel ckPathTraceKernel; cl_kernel ckFilmConvertKernel; cl_kernel ckShaderKernel; cl_int ciErr; typedef map*> ConstMemMap; typedef map MemMap; ConstMemMap const_mem_map; MemMap mem_map; device_ptr null_mem; bool device_initialized; string platform_name; const char *opencl_error_string(cl_int err) { switch (err) { case CL_SUCCESS: return "Success!"; case CL_DEVICE_NOT_FOUND: return "Device not found."; case CL_DEVICE_NOT_AVAILABLE: return "Device not available"; case CL_COMPILER_NOT_AVAILABLE: return "Compiler not available"; case CL_MEM_OBJECT_ALLOCATION_FAILURE: return "Memory object allocation failure"; case CL_OUT_OF_RESOURCES: return "Out of resources"; case CL_OUT_OF_HOST_MEMORY: return "Out of host memory"; case CL_PROFILING_INFO_NOT_AVAILABLE: return "Profiling information not available"; case CL_MEM_COPY_OVERLAP: return "Memory copy overlap"; case CL_IMAGE_FORMAT_MISMATCH: return "Image format mismatch"; case CL_IMAGE_FORMAT_NOT_SUPPORTED: return "Image format not supported"; case CL_BUILD_PROGRAM_FAILURE: return "Program build failure"; case CL_MAP_FAILURE: return "Map failure"; case CL_INVALID_VALUE: return "Invalid value"; case CL_INVALID_DEVICE_TYPE: return "Invalid device type"; case CL_INVALID_PLATFORM: return "Invalid platform"; case CL_INVALID_DEVICE: return "Invalid device"; case CL_INVALID_CONTEXT: return "Invalid context"; case CL_INVALID_QUEUE_PROPERTIES: return "Invalid queue properties"; case CL_INVALID_COMMAND_QUEUE: return "Invalid command queue"; case CL_INVALID_HOST_PTR: return "Invalid host pointer"; case CL_INVALID_MEM_OBJECT: return "Invalid memory object"; case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR: return "Invalid image format descriptor"; case CL_INVALID_IMAGE_SIZE: return "Invalid image size"; case CL_INVALID_SAMPLER: return "Invalid sampler"; case CL_INVALID_BINARY: return "Invalid binary"; case CL_INVALID_BUILD_OPTIONS: return "Invalid build options"; case CL_INVALID_PROGRAM: return "Invalid program"; case CL_INVALID_PROGRAM_EXECUTABLE: return "Invalid program executable"; case CL_INVALID_KERNEL_NAME: return "Invalid kernel name"; case CL_INVALID_KERNEL_DEFINITION: return "Invalid kernel definition"; case CL_INVALID_KERNEL: return "Invalid kernel"; case CL_INVALID_ARG_INDEX: return "Invalid argument index"; case CL_INVALID_ARG_VALUE: return "Invalid argument value"; case CL_INVALID_ARG_SIZE: return "Invalid argument size"; case CL_INVALID_KERNEL_ARGS: return "Invalid kernel arguments"; case CL_INVALID_WORK_DIMENSION: return "Invalid work dimension"; case CL_INVALID_WORK_GROUP_SIZE: return "Invalid work group size"; case CL_INVALID_WORK_ITEM_SIZE: return "Invalid work item size"; case CL_INVALID_GLOBAL_OFFSET: return "Invalid global offset"; case CL_INVALID_EVENT_WAIT_LIST: return "Invalid event wait list"; case CL_INVALID_EVENT: return "Invalid event"; case CL_INVALID_OPERATION: return "Invalid operation"; case CL_INVALID_GL_OBJECT: return "Invalid OpenGL object"; case CL_INVALID_BUFFER_SIZE: return "Invalid buffer size"; case CL_INVALID_MIP_LEVEL: return "Invalid mip-map level"; default: return "Unknown"; } } bool opencl_error(cl_int err) { if(err != CL_SUCCESS) { string message = string_printf("OpenCL error (%d): %s", err, opencl_error_string(err)); if(error_msg == "") error_msg = message; fprintf(stderr, "%s\n", message.c_str()); return true; } return false; } void opencl_error(const string& message) { if(error_msg == "") error_msg = message; fprintf(stderr, "%s\n", message.c_str()); } void opencl_assert(cl_int err) { if(err != CL_SUCCESS) { string message = string_printf("OpenCL error (%d): %s", err, opencl_error_string(err)); if(error_msg == "") error_msg = message; fprintf(stderr, "%s\n", message.c_str()); #ifndef NDEBUG abort(); #endif } } OpenCLDevice(DeviceInfo& info, Stats &stats, bool background_) : Device(stats) { background = background_; cpPlatform = NULL; cdDevice = NULL; cxContext = NULL; cqCommandQueue = NULL; cpProgram = NULL; ckPathTraceKernel = NULL; ckFilmConvertKernel = NULL; ckShaderKernel = NULL; null_mem = 0; device_initialized = false; /* setup platform */ cl_uint num_platforms; ciErr = clGetPlatformIDs(0, NULL, &num_platforms); if(opencl_error(ciErr)) return; if(num_platforms == 0) { opencl_error("OpenCL: no platforms found."); return; } vector platforms(num_platforms, NULL); ciErr = clGetPlatformIDs(num_platforms, &platforms[0], NULL); if(opencl_error(ciErr)) return; int num_base = 0; int total_devices = 0; for (int platform = 0; platform < num_platforms; platform++) { cl_uint num_devices; if(opencl_error(clGetDeviceIDs(platforms[platform], opencl_device_type(), 0, NULL, &num_devices))) return; total_devices += num_devices; if(info.num - num_base >= num_devices) { /* num doesn't refer to a device in this platform */ num_base += num_devices; continue; } /* device is in this platform */ cpPlatform = platforms[platform]; /* get devices */ vector device_ids(num_devices, NULL); if(opencl_error(clGetDeviceIDs(cpPlatform, opencl_device_type(), num_devices, &device_ids[0], NULL))) return; cdDevice = device_ids[info.num - num_base]; char name[256]; clGetPlatformInfo(cpPlatform, CL_PLATFORM_NAME, sizeof(name), &name, NULL); platform_name = name; break; } if(total_devices == 0) { opencl_error("OpenCL: no devices found."); return; } else if(!cdDevice) { opencl_error("OpenCL: specified device not found."); return; } { /* try to use cached context */ thread_scoped_lock cache_locker; cxContext = OpenCLCache::get_context(cpPlatform, cdDevice, cache_locker); if(cxContext == NULL) { /* create context properties array to specify platform */ const cl_context_properties context_props[] = { CL_CONTEXT_PLATFORM, (cl_context_properties)cpPlatform, 0, 0 }; /* create context */ cxContext = clCreateContext(context_props, 1, &cdDevice, context_notify_callback, cdDevice, &ciErr); if(opencl_error(ciErr)) return; /* cache it */ OpenCLCache::store_context(cpPlatform, cdDevice, cxContext, cache_locker); } } cqCommandQueue = clCreateCommandQueue(cxContext, cdDevice, 0, &ciErr); if(opencl_error(ciErr)) return; null_mem = (device_ptr)clCreateBuffer(cxContext, CL_MEM_READ_ONLY, 1, NULL, &ciErr); if(opencl_error(ciErr)) return; device_initialized = true; } static void context_notify_callback(const char *err_info, const void *private_info, size_t cb, void *user_data) { char name[256]; clGetDeviceInfo((cl_device_id)user_data, CL_DEVICE_NAME, sizeof(name), &name, NULL); fprintf(stderr, "OpenCL error (%s): %s\n", name, err_info); } bool opencl_version_check() { char version[256]; int major, minor, req_major = 1, req_minor = 1; clGetPlatformInfo(cpPlatform, CL_PLATFORM_VERSION, sizeof(version), &version, NULL); if(sscanf(version, "OpenCL %d.%d", &major, &minor) < 2) { opencl_error(string_printf("OpenCL: failed to parse platform version string (%s).", version)); return false; } if(!((major == req_major && minor >= req_minor) || (major > req_major))) { opencl_error(string_printf("OpenCL: platform version 1.1 or later required, found %d.%d", major, minor)); return false; } clGetDeviceInfo(cdDevice, CL_DEVICE_OPENCL_C_VERSION, sizeof(version), &version, NULL); if(sscanf(version, "OpenCL C %d.%d", &major, &minor) < 2) { opencl_error(string_printf("OpenCL: failed to parse OpenCL C version string (%s).", version)); return false; } if(!((major == req_major && minor >= req_minor) || (major > req_major))) { opencl_error(string_printf("OpenCL: C version 1.1 or later required, found %d.%d", major, minor)); return false; } return true; } bool load_binary(const string& kernel_path, const string& clbin, const string *debug_src = NULL) { /* read binary into memory */ vector binary; if(!path_read_binary(clbin, binary)) { opencl_error(string_printf("OpenCL failed to read cached binary %s.", clbin.c_str())); return false; } /* create program */ cl_int status; size_t size = binary.size(); const uint8_t *bytes = &binary[0]; cpProgram = clCreateProgramWithBinary(cxContext, 1, &cdDevice, &size, &bytes, &status, &ciErr); if(opencl_error(status) || opencl_error(ciErr)) { opencl_error(string_printf("OpenCL failed create program from cached binary %s.", clbin.c_str())); return false; } if(!build_kernel(kernel_path, debug_src)) return false; return true; } bool save_binary(const string& clbin) { size_t size = 0; clGetProgramInfo(cpProgram, CL_PROGRAM_BINARY_SIZES, sizeof(size_t), &size, NULL); if(!size) return false; vector binary(size); uint8_t *bytes = &binary[0]; clGetProgramInfo(cpProgram, CL_PROGRAM_BINARIES, sizeof(uint8_t*), &bytes, NULL); if(!path_write_binary(clbin, binary)) { opencl_error(string_printf("OpenCL failed to write cached binary %s.", clbin.c_str())); return false; } return true; } bool build_kernel(const string& kernel_path, const string *debug_src = NULL) { string build_options = opencl_kernel_build_options(platform_name, debug_src); ciErr = clBuildProgram(cpProgram, 0, NULL, build_options.c_str(), NULL, NULL); /* show warnings even if build is successful */ size_t ret_val_size = 0; clGetProgramBuildInfo(cpProgram, cdDevice, CL_PROGRAM_BUILD_LOG, 0, NULL, &ret_val_size); if(ret_val_size > 1) { vector build_log(ret_val_size+1); clGetProgramBuildInfo(cpProgram, cdDevice, CL_PROGRAM_BUILD_LOG, ret_val_size, &build_log[0], NULL); build_log[ret_val_size] = '\0'; fprintf(stderr, "OpenCL kernel build output:\n"); fprintf(stderr, "%s\n", &build_log[0]); } if(ciErr != CL_SUCCESS) { opencl_error("OpenCL build failed: errors in console"); return false; } return true; } bool compile_kernel(const string& kernel_path, const string& kernel_md5, const string *debug_src = NULL) { /* we compile kernels consisting of many files. unfortunately opencl * kernel caches do not seem to recognize changes in included files. * so we force recompile on changes by adding the md5 hash of all files */ string source = "#include \"kernel.cl\" // " + kernel_md5 + "\n"; source = path_source_replace_includes(source, kernel_path); if(debug_src) path_write_text(*debug_src, source); size_t source_len = source.size(); const char *source_str = source.c_str(); cpProgram = clCreateProgramWithSource(cxContext, 1, &source_str, &source_len, &ciErr); if(opencl_error(ciErr)) return false; double starttime = time_dt(); printf("Compiling OpenCL kernel ...\n"); if(!build_kernel(kernel_path, debug_src)) return false; printf("Kernel compilation finished in %.2lfs.\n", time_dt() - starttime); return true; } string device_md5_hash() { MD5Hash md5; char version[256], driver[256], name[256], vendor[256]; clGetPlatformInfo(cpPlatform, CL_PLATFORM_VENDOR, sizeof(vendor), &vendor, NULL); clGetDeviceInfo(cdDevice, CL_DEVICE_VERSION, sizeof(version), &version, NULL); clGetDeviceInfo(cdDevice, CL_DEVICE_NAME, sizeof(name), &name, NULL); clGetDeviceInfo(cdDevice, CL_DRIVER_VERSION, sizeof(driver), &driver, NULL); md5.append((uint8_t*)vendor, strlen(vendor)); md5.append((uint8_t*)version, strlen(version)); md5.append((uint8_t*)name, strlen(name)); md5.append((uint8_t*)driver, strlen(driver)); string options = opencl_kernel_build_options(platform_name); md5.append((uint8_t*)options.c_str(), options.size()); return md5.get_hex(); } bool load_kernels(bool experimental) { /* verify if device was initialized */ if(!device_initialized) { fprintf(stderr, "OpenCL: failed to initialize device.\n"); return false; } /* try to use cached kernel */ thread_scoped_lock cache_locker; cpProgram = OpenCLCache::get_program(cpPlatform, cdDevice, cache_locker); if(!cpProgram) { /* verify we have right opencl version */ if(!opencl_version_check()) return false; /* md5 hash to detect changes */ string kernel_path = path_get("kernel"); string kernel_md5 = path_files_md5_hash(kernel_path); string device_md5 = device_md5_hash(); /* path to cached binary */ string clbin = string_printf("cycles_kernel_%s_%s.clbin", device_md5.c_str(), kernel_md5.c_str()); clbin = path_user_get(path_join("cache", clbin)); /* path to preprocessed source for debugging */ string clsrc, *debug_src = NULL; if(opencl_kernel_use_debug()) { clsrc = string_printf("cycles_kernel_%s_%s.cl", device_md5.c_str(), kernel_md5.c_str()); clsrc = path_user_get(path_join("cache", clsrc)); debug_src = &clsrc; } /* if exists already, try use it */ if(path_exists(clbin) && load_binary(kernel_path, clbin, debug_src)) { /* kernel loaded from binary */ } else { /* if does not exist or loading binary failed, compile kernel */ if(!compile_kernel(kernel_path, kernel_md5, debug_src)) return false; /* save binary for reuse */ if(!save_binary(clbin)) return false; } /* cache the program */ OpenCLCache::store_program(cpPlatform, cdDevice, cpProgram, cache_locker); } /* find kernels */ ckPathTraceKernel = clCreateKernel(cpProgram, "kernel_ocl_path_trace", &ciErr); if(opencl_error(ciErr)) return false; ckFilmConvertKernel = clCreateKernel(cpProgram, "kernel_ocl_tonemap", &ciErr); if(opencl_error(ciErr)) return false; ckShaderKernel = clCreateKernel(cpProgram, "kernel_ocl_shader", &ciErr); if(opencl_error(ciErr)) return false; return true; } ~OpenCLDevice() { task_pool.stop(); if(null_mem) clReleaseMemObject(CL_MEM_PTR(null_mem)); ConstMemMap::iterator mt; for(mt = const_mem_map.begin(); mt != const_mem_map.end(); mt++) { mem_free(*(mt->second)); delete mt->second; } if(ckPathTraceKernel) clReleaseKernel(ckPathTraceKernel); if(ckFilmConvertKernel) clReleaseKernel(ckFilmConvertKernel); if(cpProgram) clReleaseProgram(cpProgram); if(cqCommandQueue) clReleaseCommandQueue(cqCommandQueue); if(cxContext) clReleaseContext(cxContext); } void mem_alloc(device_memory& mem, MemoryType type) { size_t size = mem.memory_size(); cl_mem_flags mem_flag; void *mem_ptr = NULL; if(type == MEM_READ_ONLY) mem_flag = CL_MEM_READ_ONLY; else if(type == MEM_WRITE_ONLY) mem_flag = CL_MEM_WRITE_ONLY; else mem_flag = CL_MEM_READ_WRITE; mem.device_pointer = (device_ptr)clCreateBuffer(cxContext, mem_flag, size, mem_ptr, &ciErr); opencl_assert(ciErr); stats.mem_alloc(size); } void mem_copy_to(device_memory& mem) { /* this is blocking */ size_t size = mem.memory_size(); ciErr = clEnqueueWriteBuffer(cqCommandQueue, CL_MEM_PTR(mem.device_pointer), CL_TRUE, 0, size, (void*)mem.data_pointer, 0, NULL, NULL); opencl_assert(ciErr); } void mem_copy_from(device_memory& mem, int y, int w, int h, int elem) { size_t offset = elem*y*w; size_t size = elem*w*h; ciErr = clEnqueueReadBuffer(cqCommandQueue, CL_MEM_PTR(mem.device_pointer), CL_TRUE, offset, size, (uchar*)mem.data_pointer + offset, 0, NULL, NULL); opencl_assert(ciErr); } void mem_zero(device_memory& mem) { if(mem.device_pointer) { memset((void*)mem.data_pointer, 0, mem.memory_size()); mem_copy_to(mem); } } void mem_free(device_memory& mem) { if(mem.device_pointer) { ciErr = clReleaseMemObject(CL_MEM_PTR(mem.device_pointer)); mem.device_pointer = 0; opencl_assert(ciErr); stats.mem_free(mem.memory_size()); } } void const_copy_to(const char *name, void *host, size_t size) { ConstMemMap::iterator i = const_mem_map.find(name); if(i == const_mem_map.end()) { device_vector *data = new device_vector(); data->copy((uchar*)host, size); mem_alloc(*data, MEM_READ_ONLY); i = const_mem_map.insert(ConstMemMap::value_type(name, data)).first; } else { device_vector *data = i->second; data->copy((uchar*)host, size); } mem_copy_to(*i->second); } void tex_alloc(const char *name, device_memory& mem, bool interpolation, bool periodic) { mem_alloc(mem, MEM_READ_ONLY); mem_copy_to(mem); assert(mem_map.find(name) == mem_map.end()); mem_map.insert(MemMap::value_type(name, mem.device_pointer)); } void tex_free(device_memory& mem) { if(mem.data_pointer) mem_free(mem); } size_t global_size_round_up(int group_size, int global_size) { int r = global_size % group_size; return global_size + ((r == 0)? 0: group_size - r); } void enqueue_kernel(cl_kernel kernel, size_t w, size_t h) { size_t workgroup_size, max_work_items[3]; clGetKernelWorkGroupInfo(kernel, cdDevice, CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &workgroup_size, NULL); clGetDeviceInfo(cdDevice, CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(size_t)*3, max_work_items, NULL); /* try to divide evenly over 2 dimensions */ size_t sqrt_workgroup_size = max(sqrt((double)workgroup_size), 1.0); size_t local_size[2] = {sqrt_workgroup_size, sqrt_workgroup_size}; /* some implementations have max size 1 on 2nd dimension */ if(local_size[1] > max_work_items[1]) { local_size[0] = workgroup_size/max_work_items[1]; local_size[1] = max_work_items[1]; } size_t global_size[2] = {global_size_round_up(local_size[0], w), global_size_round_up(local_size[1], h)}; /* run kernel */ ciErr = clEnqueueNDRangeKernel(cqCommandQueue, kernel, 2, NULL, global_size, local_size, 0, NULL, NULL); opencl_assert(ciErr); opencl_assert(clFlush(cqCommandQueue)); } void path_trace(RenderTile& rtile, int sample) { /* cast arguments to cl types */ cl_mem d_data = CL_MEM_PTR(const_mem_map["__data"]->device_pointer); cl_mem d_buffer = CL_MEM_PTR(rtile.buffer); cl_mem d_rng_state = CL_MEM_PTR(rtile.rng_state); cl_int d_x = rtile.x; cl_int d_y = rtile.y; cl_int d_w = rtile.w; cl_int d_h = rtile.h; cl_int d_sample = sample; cl_int d_offset = rtile.offset; cl_int d_stride = rtile.stride; /* sample arguments */ cl_uint narg = 0; ciErr = 0; ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_data), (void*)&d_data); ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_buffer), (void*)&d_buffer); ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_rng_state), (void*)&d_rng_state); #define KERNEL_TEX(type, ttype, name) \ ciErr |= set_kernel_arg_mem(ckPathTraceKernel, &narg, #name); #include "kernel_textures.h" ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_sample), (void*)&d_sample); ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_x), (void*)&d_x); ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_y), (void*)&d_y); ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_w), (void*)&d_w); ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_h), (void*)&d_h); ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_offset), (void*)&d_offset); ciErr |= clSetKernelArg(ckPathTraceKernel, narg++, sizeof(d_stride), (void*)&d_stride); opencl_assert(ciErr); enqueue_kernel(ckPathTraceKernel, d_w, d_h); } cl_int set_kernel_arg_mem(cl_kernel kernel, cl_uint *narg, const char *name) { cl_mem ptr; cl_int err = 0; MemMap::iterator i = mem_map.find(name); if(i != mem_map.end()) { ptr = CL_MEM_PTR(i->second); } else { /* work around NULL not working, even though the spec says otherwise */ ptr = CL_MEM_PTR(null_mem); } err |= clSetKernelArg(kernel, (*narg)++, sizeof(ptr), (void*)&ptr); opencl_assert(err); return err; } void tonemap(DeviceTask& task, device_ptr buffer, device_ptr rgba) { /* cast arguments to cl types */ cl_mem d_data = CL_MEM_PTR(const_mem_map["__data"]->device_pointer); cl_mem d_rgba = CL_MEM_PTR(rgba); cl_mem d_buffer = CL_MEM_PTR(buffer); cl_int d_x = task.x; cl_int d_y = task.y; cl_int d_w = task.w; cl_int d_h = task.h; cl_int d_sample = task.sample; cl_int d_offset = task.offset; cl_int d_stride = task.stride; /* sample arguments */ cl_uint narg = 0; ciErr = 0; ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_data), (void*)&d_data); ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_rgba), (void*)&d_rgba); ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_buffer), (void*)&d_buffer); #define KERNEL_TEX(type, ttype, name) \ ciErr |= set_kernel_arg_mem(ckFilmConvertKernel, &narg, #name); #include "kernel_textures.h" ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_sample), (void*)&d_sample); ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_x), (void*)&d_x); ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_y), (void*)&d_y); ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_w), (void*)&d_w); ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_h), (void*)&d_h); ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_offset), (void*)&d_offset); ciErr |= clSetKernelArg(ckFilmConvertKernel, narg++, sizeof(d_stride), (void*)&d_stride); opencl_assert(ciErr); enqueue_kernel(ckFilmConvertKernel, d_w, d_h); } void shader(DeviceTask& task) { /* cast arguments to cl types */ cl_mem d_data = CL_MEM_PTR(const_mem_map["__data"]->device_pointer); cl_mem d_input = CL_MEM_PTR(task.shader_input); cl_mem d_output = CL_MEM_PTR(task.shader_output); cl_int d_shader_eval_type = task.shader_eval_type; cl_int d_shader_x = task.shader_x; cl_int d_shader_w = task.shader_w; /* sample arguments */ cl_uint narg = 0; ciErr = 0; ciErr |= clSetKernelArg(ckShaderKernel, narg++, sizeof(d_data), (void*)&d_data); ciErr |= clSetKernelArg(ckShaderKernel, narg++, sizeof(d_input), (void*)&d_input); ciErr |= clSetKernelArg(ckShaderKernel, narg++, sizeof(d_output), (void*)&d_output); #define KERNEL_TEX(type, ttype, name) \ ciErr |= set_kernel_arg_mem(ckShaderKernel, &narg, #name); #include "kernel_textures.h" ciErr |= clSetKernelArg(ckShaderKernel, narg++, sizeof(d_shader_eval_type), (void*)&d_shader_eval_type); ciErr |= clSetKernelArg(ckShaderKernel, narg++, sizeof(d_shader_x), (void*)&d_shader_x); ciErr |= clSetKernelArg(ckShaderKernel, narg++, sizeof(d_shader_w), (void*)&d_shader_w); opencl_assert(ciErr); enqueue_kernel(ckShaderKernel, task.shader_w, 1); } void thread_run(DeviceTask *task) { if(task->type == DeviceTask::TONEMAP) { tonemap(*task, task->buffer, task->rgba); } else if(task->type == DeviceTask::SHADER) { shader(*task); } else if(task->type == DeviceTask::PATH_TRACE) { RenderTile tile; /* keep rendering tiles until done */ while(task->acquire_tile(this, tile)) { int start_sample = tile.start_sample; int end_sample = tile.start_sample + tile.num_samples; for(int sample = start_sample; sample < end_sample; sample++) { if(task->get_cancel()) { if(task->need_finish_queue == false) break; } path_trace(tile, sample); tile.sample = sample + 1; //task->update_progress(tile); } task->release_tile(tile); } } } class OpenCLDeviceTask : public DeviceTask { public: OpenCLDeviceTask(OpenCLDevice *device, DeviceTask& task) : DeviceTask(task) { run = function_bind(&OpenCLDevice::thread_run, device, this); } }; void task_add(DeviceTask& task) { task_pool.push(new OpenCLDeviceTask(this, task)); } void task_wait() { task_pool.wait_work(); } void task_cancel() { task_pool.cancel(); } }; Device *device_opencl_create(DeviceInfo& info, Stats &stats, bool background) { return new OpenCLDevice(info, stats, background); } void device_opencl_info(vector& devices) { vector device_ids; cl_uint num_devices = 0; vector platform_ids; cl_uint num_platforms = 0; /* get devices */ if(clGetPlatformIDs(0, NULL, &num_platforms) != CL_SUCCESS || num_platforms == 0) return; platform_ids.resize(num_platforms); if(clGetPlatformIDs(num_platforms, &platform_ids[0], NULL) != CL_SUCCESS) return; /* devices are numbered consecutively across platforms */ int num_base = 0; for (int platform = 0; platform < num_platforms; platform++, num_base += num_devices) { num_devices = 0; if(clGetDeviceIDs(platform_ids[platform], opencl_device_type(), 0, NULL, &num_devices) != CL_SUCCESS || num_devices == 0) continue; device_ids.resize(num_devices); if(clGetDeviceIDs(platform_ids[platform], opencl_device_type(), num_devices, &device_ids[0], NULL) != CL_SUCCESS) continue; char pname[256]; clGetPlatformInfo(platform_ids[platform], CL_PLATFORM_NAME, sizeof(pname), &pname, NULL); string platform_name = pname; /* add devices */ for(int num = 0; num < num_devices; num++) { cl_device_id device_id = device_ids[num]; char name[1024] = "\0"; if(clGetDeviceInfo(device_id, CL_DEVICE_NAME, sizeof(name), &name, NULL) != CL_SUCCESS) continue; DeviceInfo info; info.type = DEVICE_OPENCL; info.description = string(name); info.num = num_base + num; info.id = string_printf("OPENCL_%d", info.num); /* we don't know if it's used for display, but assume it is */ info.display_device = true; info.advanced_shading = opencl_kernel_use_advanced_shading(platform_name); info.pack_images = true; devices.push_back(info); } } } CCL_NAMESPACE_END #endif /* WITH_OPENCL */