import bpy from math import atan, pi, degrees import subprocess import os import sys import time import platform as pltfrm if pltfrm.architecture()[0] == '64bit': bitness = 64 else: bitness = 32 def write_pov(filename, scene=None, info_callback = None): file = open(filename, 'w') # Only for testing if not scene: scene = bpy.data.scenes[0] render = scene.render_data materialTable = {} def saneName(name): name = name.lower() for ch in ' /\\+=-[]{}().,<>\'":;~!@#$%^&*|?': name = name.replace(ch, '_') return name def writeMatrix(matrix): file.write('\tmatrix <%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f>\n' %\ (matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2]) ) def exportCamera(): camera = scene.camera matrix = camera.matrix # compute resolution Qsize=float(render.resolution_x)/float(render.resolution_y) file.write('camera {\n') file.write('\tlocation <0, 0, 0>\n') file.write('\tlook_at <0, 0, -1>\n') file.write('\tright <%s, 0, 0>\n' % -Qsize) file.write('\tup <0, 1, 0>\n') file.write('\tangle %f \n' % (360.0*atan(16.0/camera.data.lens)/pi)) file.write('\trotate <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotationPart().toEuler()])) file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2])) file.write('}\n') def exportLamps(lamps): # Get all lamps for ob in lamps: lamp = ob.data matrix = ob.matrix color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy file.write('light_source') file.write('{\n') file.write('\t< 0,0,0 >\n') file.write('\tcolor red %.6f green %.6f blue %.6f\n' % color) if lamp.type == 'POINT': # Point Lamp pass elif lamp.type == 'SPOT': # Spot file.write('\tspotlight\n') # Falloff is the main radius from the centre line file.write('\tfalloff %.2f\n' % (lamp.spot_size/2.0) ) # 1 TO 179 FOR BOTH file.write('\tradius %.6f\n' % ((lamp.spot_size/2.0) * (1-lamp.spot_blend)) ) # Blender does not have a tightness equivilent, 0 is most like blender default. file.write('\ttightness 0\n') # 0:10f file.write('\tpoint_at <0, 0, -1>\n') elif lamp.type == 'AREA': size_x = lamp.size samples_x = lamp.shadow_ray_samples_x if lamp.shape == 'SQUARE': size_y = size_x samples_y = samples_x else: size_y = lamp.size_y samples_y = lamp.shadow_ray_samples_y file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y)) if lamp.shadow_ray_sampling_method == 'CONSTANT_JITTERED': if lamp.jitter: file.write('\tjitter\n') else: file.write('\tadaptive 1\n') file.write('\tjitter\n') if lamp.shadow_method == 'NOSHADOW': file.write('\tshadowless\n') file.write('\tfade_distance %.6f\n' % lamp.distance) file.write('\tfade_power %d\n' % 1) # Could use blenders lamp quad? writeMatrix(matrix) file.write('}\n') def exportMeshs(sel): def bMat2PovString(material): povstring = 'finish {' if world != None: povstring += 'ambient <%.6f, %.6f, %.6f> ' % tuple([c*material.ambient for c in world.ambient_color]) povstring += 'diffuse %.6f ' % material.diffuse_reflection povstring += 'specular %.6f ' % material.specular_reflection if material.raytrace_mirror.enabled: #povstring += 'interior { ior %.6f } ' % material.IOR raytrace_mirror= material.raytrace_mirror if raytrace_mirror.reflect: povstring += 'reflection {' povstring += '<%.6f, %.6f, %.6f>' % tuple(material.mirror_color) # Should ask for ray mirror flag povstring += 'fresnel 1 falloff %.6f exponent %.6f metallic %.6f} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_fac, raytrace_mirror.reflect) if material.raytrace_transparency.enabled: #povstring += 'interior { ior %.6f } ' % material.IOR pass #file.write('\t\troughness %.6f\n' % (material.hard*0.5)) #file.write('\t\t\tcrand 0.0\n') # Sand granyness #file.write('\t\t\tmetallic %.6f\n' % material.spec) #file.write('\t\t\tphong %.6f\n' % material.spec) #file.write('\t\t\tphong_size %.6f\n' % material.spec) povstring += 'brilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness povstring += '}' #file.write('\t}\n') return povstring world = scene.world # Convert all materials to strings we can access directly per vertex. for material in bpy.data.materials: materialTable[material.name] = bMat2PovString(material) ob_num = 0 for ob in sel: ob_num+= 1 if ob.type in ('LAMP', 'CAMERA', 'EMPTY'): continue me = ob.data me_materials= me.materials me = ob.create_render_mesh(scene) if not me: continue if info_callback: info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name)) #if ob.type!='MESH': # continue # me = ob.data matrix = ob.matrix try: uv_layer = me.active_uv_texture.data except:uv_layer = None try: vcol_layer = me.active_vertex_color.data except:vcol_layer = None def regular_face(f): fv = f.verts if fv[3]== 0: return fv[0], fv[1], fv[2] return fv[0], fv[1], fv[2], fv[3] faces_verts = [regular_face(f) for f in me.faces] faces_normals = [tuple(f.normal) for f in me.faces] verts_normals = [tuple(v.normal) for v in me.verts] # quads incur an extra face quadCount = len([f for f in faces_verts if len(f)==4]) file.write('mesh2 {\n') file.write('\tvertex_vectors {\n') file.write('\t\t%s' % (len(me.verts))) # vert count for v in me.verts: file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count file.write('\n }\n') # Build unique Normal list uniqueNormals = {} for fi, f in enumerate(me.faces): fv = faces_verts[fi] # [-1] is a dummy index, use a list so we can modify in place if f.smooth: # Use vertex normals for v in fv: key = verts_normals[v] uniqueNormals[key] = [-1] else: # Use face normal key = faces_normals[fi] uniqueNormals[key] = [-1] file.write('\tnormal_vectors {\n') file.write('\t\t%d' % len(uniqueNormals)) # vert count idx = 0 for no, index in uniqueNormals.items(): file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count index[0] = idx idx +=1 file.write('\n }\n') # Vertex colours vertCols = {} # Use for material colours also. if uv_layer: # Generate unique UV's uniqueUVs = {} for fi, uv in enumerate(uv_layer): if len(faces_verts[fi])==4: uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4 else: uvs = uv.uv1, uv.uv2, uv.uv3 for uv in uvs: uniqueUVs[tuple(uv)] = [-1] file.write('\tuv_vectors {\n') #print unique_uvs file.write('\t\t%s' % (len(uniqueUVs))) # vert count idx = 0 for uv, index in uniqueUVs.items(): file.write(',\n\t\t<%.6f, %.6f>' % uv) index[0] = idx idx +=1 ''' else: # Just add 1 dummy vector, no real UV's file.write('\t\t1') # vert count file.write(',\n\t\t<0.0, 0.0>') ''' file.write('\n }\n') if me.vertex_colors: for fi, f in enumerate(me.faces): material_index = f.material_index material = me_materials[material_index] if material and material.vertex_color_paint: col = vcol_layer[fi] if len(faces_verts[fi])==4: cols = col.color1, col.color2, col.color3, col.color4 else: cols = col.color1, col.color2, col.color3 for col in cols: key = col[0], col[1], col[2], material_index # Material index! vertCols[key] = [-1] else: if material: diffuse_color = tuple(material.diffuse_color) key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index vertCols[key] = [-1] else: # No vertex colours, so write material colours as vertex colours for i, material in enumerate(me_materials): if material: diffuse_color = tuple(material.diffuse_color) key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat vertCols[key] = [-1] # Vert Colours file.write('\ttexture_list {\n') file.write('\t\t%s' % (len(vertCols))) # vert count idx=0 for col, index in vertCols.items(): if me_materials: material = me_materials[col[3]] materialString = materialTable[material.name] else: materialString = '' # Dont write anything float_col = col[0], col[1], col[2], 1-material.alpha, materialString #print material.apl file.write(',\n\t\ttexture { pigment {rgbf<%.6f, %.6f, %.6f, %.6f>}%s}' % float_col) index[0] = idx idx+=1 file.write( '\n }\n' ) # Face indicies file.write('\tface_indices {\n') file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count for fi, f in enumerate(me.faces): fv = faces_verts[fi] material_index= f.material_index if len(fv) == 4: indicies = (0,1,2), (0,2,3) else: indicies = ((0,1,2),) if vcol_layer: col = vcol_layer[fi] if len(fv) == 4: cols = col.color1, col.color2, col.color3, col.color4 else: cols = col.color1, col.color2, col.color3 if not me_materials or me_materials[material_index] == None: # No materials for i1, i2, i3 in indicies: file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count else: material = me_materials[material_index] for i1, i2, i3 in indicies: if me.vertex_colors and material.vertex_color_paint: # Colour per vertex - vertex colour col1 = cols[i1] col2 = cols[i2] col3 = cols[i3] ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0] ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0] ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0] else: # Colour per material - flat material colour diffuse_color= material.diffuse_color ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0] file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count file.write('\n }\n') # normal_indices indicies file.write('\tnormal_indices {\n') file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count for fi, f in enumerate(me.faces): fv = faces_verts[fi] if len(fv) == 4: indicies = (0,1,2), (0,2,3) else: indicies = ((0,1,2),) for i1, i2, i3 in indicies: if f.smooth: file.write(',\n\t\t<%d,%d,%d>' %\ (uniqueNormals[verts_normals[fv[i1]]][0],\ uniqueNormals[verts_normals[fv[i2]]][0],\ uniqueNormals[verts_normals[fv[i3]]][0])) # vert count else: idx = uniqueNormals[faces_normals[fi]][0] file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count file.write('\n }\n') # normal_indices indicies if uv_layer: file.write('\tuv_indices {\n') file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count for f in me.faces: fv = faces_verts[fi] if len(fv) == 4: indicies = (0,1,2), (0,2,3) else: indicies = ((0,1,2),) uv = uv_layer[fi] if len(faces_verts[fi])==4: uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4 else: uvs = uv.uv1, uv.uv2, uv.uv3 for i1, i2, i3 in indicies: file.write(',\n\t\t<%d,%d,%d>' %\ (uniqueUVs[tuple(uvs[i1][0:2])][0],\ uniqueUVs[tuple(uvs[i2][0:2])][0],\ uniqueUVs[tuple(uvs[i2][0:2])][0])) # vert count file.write('\n }\n') if me.materials: material = me.materials[0] # dodgy if material and material.raytrace_transparency.enabled: file.write('\tinterior { ior %.6f }\n' % material.raytrace_transparency.ior) writeMatrix(matrix) file.write('}\n') bpy.data.remove_mesh(me) exportCamera() #exportMaterials() sel = scene.objects lamps = [l for l in sel if l.type == 'LAMP'] exportLamps(lamps) exportMeshs(sel) file.close() def write_pov_ini(filename_ini, filename_pov, filename_image): scene = bpy.data.scenes[0] render = scene.render_data x= int(render.resolution_x*render.resolution_percentage*0.01) y= int(render.resolution_y*render.resolution_percentage*0.01) file = open(filename_ini, 'w') file.write('Input_File_Name="%s"\n' % filename_pov) file.write('Output_File_Name="%s"\n' % filename_image) file.write('Width=%d\n' % x) file.write('Height=%d\n' % y) # Needed for border render. ''' file.write('Start_Column=%d\n' % part.x) file.write('End_Column=%d\n' % (part.x+part.w)) file.write('Start_Row=%d\n' % (part.y)) file.write('End_Row=%d\n' % (part.y+part.h)) ''' file.write('Display=0\n') file.write('Pause_When_Done=0\n') file.write('Output_File_Type=C\n') # TGA, best progressive loading file.write('Output_Alpha=1\n') if render.antialiasing: aa_mapping = {'OVERSAMPLE_5':2, 'OVERSAMPLE_8':3, 'OVERSAMPLE_11':4, 'OVERSAMPLE_16':5} # method 1 assumed file.write('Antialias=1\n') file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples]) else: file.write('Antialias=0\n') file.close() class PovrayRenderEngine(bpy.types.RenderEngine): __label__ = "Povray" DELAY = 0.02 def _export(self, scene): import tempfile self.temp_file_in = tempfile.mktemp(suffix='.pov') self.temp_file_out = tempfile.mktemp(suffix='.tga') self.temp_file_ini = tempfile.mktemp(suffix='.ini') def info_callback(txt): self.update_stats("", "POVRAY: " + txt) write_pov(self.temp_file_in, scene, info_callback) def _render(self): try: os.remove(self.temp_file_out) # so as not to load the old file except: pass write_pov_ini(self.temp_file_ini, self.temp_file_in, self.temp_file_out) print ("***-STARTING-***") # This works too but means we have to wait until its done # os.system('povray %s' % self.temp_file_ini) pov_binary = "povray" if sys.platform=='win32': if bitness == 64: pov_binary = "pvengine64" else: pov_binary = "pvengine" self.process = subprocess.Popen([pov_binary, self.temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE print ("***-DONE-***") def _cleanup(self): for f in (self.temp_file_in, self.temp_file_ini, self.temp_file_out): try: os.remove(f) except: pass self.update_stats("", "") def render(self, scene): self.update_stats("", "POVRAY: Exporting data from Blender") self._export(scene) self.update_stats("", "POVRAY: Parsing File") self._render() r = scene.render_data # compute resolution x= int(r.resolution_x*r.resolution_percentage*0.01) y= int(r.resolution_y*r.resolution_percentage*0.01) # Wait for the file to be created while not os.path.exists(self.temp_file_out): time.sleep(self.DELAY) self.update_stats("", "POVRAY: Rendering") prev_size = -1 def update_image(): result = self.begin_result(0, 0, x, y) lay = result.layers[0] # possible the image wont load early on. try: lay.rect_from_file(self.temp_file_out, 0, 0) except: pass self.end_result(result) # Update while povray renders while True: # test if povray exists if self.process.poll() != None: update_image(); break # user exit if self.test_break(): try: # It might not be running self.process.terminate() except: pass break # Would be nice to redirect the output # stdout_value, stderr_value = self.process.communicate() # locks # check if the file updated new_size = os.path.getsize(self.temp_file_out) if new_size != prev_size: update_image() prev_size = new_size time.sleep(self.DELAY) self._cleanup() bpy.types.register(PovrayRenderEngine)