#include "CcdPhysicsController.h" #include "Dynamics/RigidBody.h" #include "PHY_IMotionState.h" #include "BroadphaseCollision/BroadphaseProxy.h" #include "CollisionShapes/ConvexShape.h" class BP_Proxy; //'temporarily' global variables float gDeactivationTime = 2.f; float gLinearSleepingTreshold = 0.8f; float gAngularSleepingTreshold = 1.0f; #include "Dynamics/MassProps.h" SimdVector3 startVel(0,0,0);//-10000); CcdPhysicsController::CcdPhysicsController (const CcdConstructionInfo& ci) { m_collisionDelay = 0; m_MotionState = ci.m_MotionState; SimdTransform trans; float tmp[3]; m_MotionState->getWorldPosition(tmp[0],tmp[1],tmp[2]); trans.setOrigin(SimdVector3(tmp[0],tmp[1],tmp[2])); SimdQuaternion orn; m_MotionState->getWorldOrientation(orn[0],orn[1],orn[2],orn[3]); trans.setRotation(orn); MassProps mp(ci.m_mass, ci.m_localInertiaTensor); m_body = new RigidBody(mp,0,0,ci.m_friction,ci.m_restitution); m_broadphaseHandle = ci.m_broadphaseHandle; m_collisionShape = ci.m_collisionShape; // // init the rigidbody properly // m_body->setMassProps(ci.m_mass, ci.m_localInertiaTensor); m_body->setGravity( ci.m_gravity); m_body->setDamping(ci.m_linearDamping, ci.m_angularDamping); m_body->setCenterOfMassTransform( trans ); #ifdef WIN32 if (m_body->getInvMass()) m_body->setLinearVelocity(startVel); #endif } CcdPhysicsController::~CcdPhysicsController() { //will be reference counted, due to sharing //delete m_collisionShape; delete m_MotionState; delete m_body; } /** SynchronizeMotionStates ynchronizes dynas, kinematic and deformable entities (and do 'late binding') */ bool CcdPhysicsController::SynchronizeMotionStates(float time) { const SimdVector3& worldPos = m_body->getCenterOfMassPosition(); m_MotionState->setWorldPosition(worldPos[0],worldPos[1],worldPos[2]); const SimdQuaternion& worldquat = m_body->getOrientation(); m_MotionState->setWorldOrientation(worldquat[0],worldquat[1],worldquat[2],worldquat[3]); m_MotionState->calculateWorldTransformations(); float scale[3]; m_MotionState->getWorldScaling(scale[0],scale[1],scale[2]); SimdVector3 scaling(scale[0],scale[1],scale[2]); m_collisionShape->setLocalScaling(scaling); return true; } /** WriteMotionStateToDynamics synchronizes dynas, kinematic and deformable entities (and do 'late binding') */ void CcdPhysicsController::WriteMotionStateToDynamics(bool nondynaonly) { } void CcdPhysicsController::WriteDynamicsToMotionState() { } // controller replication void CcdPhysicsController::PostProcessReplica(class PHY_IMotionState* motionstate,class PHY_IPhysicsController* parentctrl) { } // kinematic methods void CcdPhysicsController::RelativeTranslate(float dlocX,float dlocY,float dlocZ,bool local) { SimdTransform xform = m_body->getCenterOfMassTransform(); xform.setOrigin(xform.getOrigin() + SimdVector3(dlocX,dlocY,dlocZ)); this->m_body->setCenterOfMassTransform(xform); } void CcdPhysicsController::RelativeRotate(const float drot[9],bool local) { } void CcdPhysicsController::getOrientation(float &quatImag0,float &quatImag1,float &quatImag2,float &quatReal) { } void CcdPhysicsController::setOrientation(float quatImag0,float quatImag1,float quatImag2,float quatReal) { } void CcdPhysicsController::setPosition(float posX,float posY,float posZ) { } void CcdPhysicsController::resolveCombinedVelocities(float linvelX,float linvelY,float linvelZ,float angVelX,float angVelY,float angVelZ) { } void CcdPhysicsController::getPosition(PHY__Vector3& pos) const { assert(0); } void CcdPhysicsController::setScaling(float scaleX,float scaleY,float scaleZ) { } // physics methods void CcdPhysicsController::ApplyTorque(float torqueX,float torqueY,float torqueZ,bool local) { } void CcdPhysicsController::ApplyForce(float forceX,float forceY,float forceZ,bool local) { } void CcdPhysicsController::SetAngularVelocity(float ang_velX,float ang_velY,float ang_velZ,bool local) { SimdVector3 angvel(ang_velX,ang_velY,ang_velZ); m_body->setAngularVelocity(angvel); } void CcdPhysicsController::SetLinearVelocity(float lin_velX,float lin_velY,float lin_velZ,bool local) { SimdVector3 linVel(lin_velX,lin_velY,lin_velZ); m_body->setLinearVelocity(linVel); } void CcdPhysicsController::applyImpulse(float attachX,float attachY,float attachZ, float impulseX,float impulseY,float impulseZ) { } void CcdPhysicsController::SetActive(bool active) { } // reading out information from physics void CcdPhysicsController::GetLinearVelocity(float& linvX,float& linvY,float& linvZ) { } void CcdPhysicsController::GetVelocity(const float posX,const float posY,const float posZ,float& linvX,float& linvY,float& linvZ) { } void CcdPhysicsController::getReactionForce(float& forceX,float& forceY,float& forceZ) { } // dyna's that are rigidbody are free in orientation, dyna's with non-rigidbody are restricted void CcdPhysicsController::setRigidBody(bool rigid) { } // clientinfo for raycasts for example void* CcdPhysicsController::getNewClientInfo() { return 0; } void CcdPhysicsController::setNewClientInfo(void* clientinfo) { } void CcdPhysicsController::UpdateDeactivation(float timeStep) { if ( (m_body->GetActivationState() == 2)) return; if ((m_body->getLinearVelocity().length2() < gLinearSleepingTreshold*gLinearSleepingTreshold) && (m_body->getAngularVelocity().length2() < gAngularSleepingTreshold*gAngularSleepingTreshold)) { m_body->m_deactivationTime += timeStep; } else { m_body->m_deactivationTime=0.f; m_body->SetActivationState(0); } } bool CcdPhysicsController::wantsSleeping() { //disable deactivation if (gDeactivationTime == 0.f) return false; //2 == ISLAND_SLEEPING, 3 == WANTS_DEACTIVATION if ( (m_body->GetActivationState() == 2) || (m_body->GetActivationState() == 3)) return true; if (m_body->m_deactivationTime> gDeactivationTime) { return true; } return false; }