/* * Copyright 2011, Blender Foundation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "camera.h" #include "scene.h" #include "util_vector.h" CCL_NAMESPACE_BEGIN Camera::Camera() { shuttertime = 1.0f; aperturesize = 0.0f; focaldistance = 10.0f; blades = 0; bladesrotation = 0.0f; matrix = transform_identity(); motion.pre = transform_identity(); motion.post = transform_identity(); use_motion = false; type = CAMERA_PERSPECTIVE; fov = M_PI_F/4.0f; nearclip = 1e-5f; farclip = 1e5f; width = 1024; height = 512; left = -((float)width/(float)height); right = (float)width/(float)height; bottom = -1.0f; top = 1.0f; screentoworld = transform_identity(); rastertoworld = transform_identity(); ndctoworld = transform_identity(); rastertocamera = transform_identity(); cameratoworld = transform_identity(); worldtoraster = transform_identity(); dx = make_float3(0.0f, 0.0f, 0.0f); dy = make_float3(0.0f, 0.0f, 0.0f); need_update = true; need_device_update = true; } Camera::~Camera() { } void Camera::update() { if(!need_update) return; /* ndc to raster */ Transform screentocamera; Transform ndctoraster = transform_scale(width, height, 1.0f); /* raster to screen */ Transform screentoraster = ndctoraster; screentoraster = ndctoraster * transform_scale(1.0f/(right - left), 1.0f/(top - bottom), 1.0f) * transform_translate(-left, -bottom, 0.0f); Transform rastertoscreen = transform_inverse(screentoraster); /* screen to camera */ if(type == CAMERA_PERSPECTIVE) screentocamera = transform_inverse(transform_perspective(fov, nearclip, farclip)); else if(type == CAMERA_ORTHOGRAPHIC) screentocamera = transform_inverse(transform_orthographic(nearclip, farclip)); else screentocamera = transform_identity(); rastertocamera = screentocamera * rastertoscreen; cameratoworld = matrix; screentoworld = cameratoworld * screentocamera; rastertoworld = cameratoworld * rastertocamera; ndctoworld = rastertoworld * ndctoraster; worldtoraster = transform_inverse(rastertoworld); /* differentials */ if(type == CAMERA_ORTHOGRAPHIC) { dx = transform_direction(&rastertocamera, make_float3(1, 0, 0)); dy = transform_direction(&rastertocamera, make_float3(0, 1, 0)); } else if(type == CAMERA_PERSPECTIVE) { dx = transform_perspective(&rastertocamera, make_float3(1, 0, 0)) - transform_perspective(&rastertocamera, make_float3(0, 0, 0)); dy = transform_perspective(&rastertocamera, make_float3(0, 1, 0)) - transform_perspective(&rastertocamera, make_float3(0, 0, 0)); } else { dx = make_float3(0, 0, 0); dy = make_float3(0, 0, 0); } dx = transform_direction(&cameratoworld, dx); dy = transform_direction(&cameratoworld, dy); need_update = false; need_device_update = true; } void Camera::device_update(Device *device, DeviceScene *dscene, Scene *scene) { update(); if(!need_device_update) return; KernelCamera *kcam = &dscene->data.cam; /* store matrices */ kcam->screentoworld = screentoworld; kcam->rastertoworld = rastertoworld; kcam->ndctoworld = ndctoworld; kcam->rastertocamera = rastertocamera; kcam->cameratoworld = cameratoworld; kcam->worldtoscreen = transform_inverse(screentoworld); kcam->worldtoraster = worldtoraster; kcam->worldtondc = transform_inverse(ndctoworld); kcam->worldtocamera = transform_inverse(cameratoworld); /* camera motion */ Scene::MotionType need_motion = scene->need_motion(); if(need_motion == Scene::MOTION_PASS) { if(use_motion) { kcam->motion.pre = transform_inverse(motion.pre * rastertocamera); kcam->motion.post = transform_inverse(motion.post * rastertocamera); } else { kcam->motion.pre = worldtoraster; kcam->motion.post = worldtoraster; } } else if(need_motion == Scene::MOTION_BLUR) { /* todo: exact camera position will not be hit this way */ transform_motion_decompose(&kcam->motion, &motion); } /* depth of field */ kcam->aperturesize = aperturesize; kcam->focaldistance = focaldistance; kcam->blades = (blades < 3)? 0.0f: blades; kcam->bladesrotation = bladesrotation; /* motion blur */ kcam->shuttertime= (need_motion == Scene::MOTION_BLUR)? shuttertime: 0.0f; /* type */ kcam->type = type; /* store differentials */ kcam->dx = float3_to_float4(dx); kcam->dy = float3_to_float4(dy); /* clipping */ kcam->nearclip = nearclip; kcam->cliplength = (farclip == FLT_MAX)? FLT_MAX: farclip - nearclip; need_device_update = false; } void Camera::device_free(Device *device, DeviceScene *dscene) { /* nothing to free, only writing to constant memory */ } bool Camera::modified(const Camera& cam) { return !((shuttertime== cam.shuttertime) && (aperturesize == cam.aperturesize) && (blades == cam.blades) && (bladesrotation == cam.bladesrotation) && (focaldistance == cam.focaldistance) && (type == cam.type) && (fov == cam.fov) && (nearclip == cam.nearclip) && (farclip == cam.farclip) && // modified for progressive render // (width == cam.width) && // (height == cam.height) && (left == cam.left) && (right == cam.right) && (bottom == cam.bottom) && (top == cam.top) && (matrix == cam.matrix) && (motion == cam.motion) && (use_motion == cam.use_motion)); } void Camera::tag_update() { need_update = true; } CCL_NAMESPACE_END