/* * Copyright 2011, Blender Foundation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "kernel_differential.h" #include "kernel_montecarlo.h" #include "kernel_projection.h" #include "kernel_object.h" #include "kernel_triangle.h" #ifdef __QBVH__ #include "kernel_qbvh.h" #else #include "kernel_bvh.h" #endif #include "kernel_accumulate.h" #include "kernel_camera.h" #include "kernel_shader.h" #include "kernel_light.h" #include "kernel_emission.h" #include "kernel_random.h" #include "kernel_passes.h" CCL_NAMESPACE_BEGIN typedef struct PathState { uint flag; int bounce; int diffuse_bounce; int glossy_bounce; int transmission_bounce; int transparent_bounce; } PathState; __device_inline void path_state_init(PathState *state) { state->flag = PATH_RAY_CAMERA|PATH_RAY_SINGULAR|PATH_RAY_MIS_SKIP; state->bounce = 0; state->diffuse_bounce = 0; state->glossy_bounce = 0; state->transmission_bounce = 0; state->transparent_bounce = 0; } __device_inline void path_state_next(KernelGlobals *kg, PathState *state, int label) { /* ray through transparent keeps same flags from previous ray and is * not counted as a regular bounce, transparent has separate max */ if(label & LABEL_TRANSPARENT) { state->flag |= PATH_RAY_TRANSPARENT; state->transparent_bounce++; if(!kernel_data.integrator.transparent_shadows) state->flag |= PATH_RAY_MIS_SKIP; return; } state->bounce++; /* reflection/transmission */ if(label & LABEL_REFLECT) { state->flag |= PATH_RAY_REFLECT; state->flag &= ~(PATH_RAY_TRANSMIT|PATH_RAY_CAMERA|PATH_RAY_TRANSPARENT); if(label & LABEL_DIFFUSE) state->diffuse_bounce++; else state->glossy_bounce++; } else { kernel_assert(label & LABEL_TRANSMIT); state->flag |= PATH_RAY_TRANSMIT; state->flag &= ~(PATH_RAY_REFLECT|PATH_RAY_CAMERA|PATH_RAY_TRANSPARENT); state->transmission_bounce++; } /* diffuse/glossy/singular */ if(label & LABEL_DIFFUSE) { state->flag |= PATH_RAY_DIFFUSE; state->flag &= ~(PATH_RAY_GLOSSY|PATH_RAY_SINGULAR|PATH_RAY_MIS_SKIP); } else if(label & LABEL_GLOSSY) { state->flag |= PATH_RAY_GLOSSY; state->flag &= ~(PATH_RAY_DIFFUSE|PATH_RAY_SINGULAR|PATH_RAY_MIS_SKIP); } else { kernel_assert(label & LABEL_SINGULAR); state->flag |= PATH_RAY_GLOSSY|PATH_RAY_SINGULAR|PATH_RAY_MIS_SKIP; state->flag &= ~PATH_RAY_DIFFUSE; } } __device_inline uint path_state_ray_visibility(KernelGlobals *kg, PathState *state) { uint flag = state->flag; /* for visibility, diffuse/glossy are for reflection only */ if(flag & PATH_RAY_TRANSMIT) flag &= ~(PATH_RAY_DIFFUSE|PATH_RAY_GLOSSY); /* for camera visibility, use render layer flags */ if(flag & PATH_RAY_CAMERA) flag |= kernel_data.integrator.layer_flag; return flag; } __device_inline float path_state_terminate_probability(KernelGlobals *kg, PathState *state, const float3 throughput) { if(state->flag & PATH_RAY_TRANSPARENT) { /* transparent rays treated separately */ if(state->transparent_bounce >= kernel_data.integrator.transparent_max_bounce) return 0.0f; else if(state->transparent_bounce <= kernel_data.integrator.transparent_min_bounce) return 1.0f; } else { /* other rays */ if((state->bounce >= kernel_data.integrator.max_bounce) || (state->diffuse_bounce >= kernel_data.integrator.max_diffuse_bounce) || (state->glossy_bounce >= kernel_data.integrator.max_glossy_bounce) || (state->transmission_bounce >= kernel_data.integrator.max_transmission_bounce)) { return 0.0f; } else if(state->bounce <= kernel_data.integrator.min_bounce) { return 1.0f; } } /* probalistic termination */ return average(throughput); } __device_inline bool shadow_blocked(KernelGlobals *kg, PathState *state, Ray *ray, float3 *shadow) { *shadow = make_float3(1.0f, 1.0f, 1.0f); if(ray->t == 0.0f) return false; Intersection isect; bool result = scene_intersect(kg, ray, PATH_RAY_SHADOW_OPAQUE, &isect); #ifdef __TRANSPARENT_SHADOWS__ if(result && kernel_data.integrator.transparent_shadows) { /* transparent shadows work in such a way to try to minimize overhead * in cases where we don't need them. after a regular shadow ray is * cast we check if the hit primitive was potentially transparent, and * only in that case start marching. this gives on extra ray cast for * the cases were we do want transparency. * * also note that for this to work correct, multi close sampling must * be used, since we don't pass a random number to shader_eval_surface */ if(shader_transparent_shadow(kg, &isect)) { float3 throughput = make_float3(1.0f, 1.0f, 1.0f); float3 Pend = ray->P + ray->D*ray->t; int bounce = state->transparent_bounce; for(;;) { if(bounce >= kernel_data.integrator.transparent_max_bounce) { return true; } else if(bounce >= kernel_data.integrator.transparent_min_bounce) { /* todo: get random number somewhere for probabilistic terminate */ #if 0 float probability = average(throughput); float terminate = 0.0f; if(terminate >= probability) return true; throughput /= probability; #endif } if(!scene_intersect(kg, ray, PATH_RAY_SHADOW_TRANSPARENT, &isect)) { *shadow *= throughput; return false; } if(!shader_transparent_shadow(kg, &isect)) return true; ShaderData sd; shader_setup_from_ray(kg, &sd, &isect, ray); shader_eval_surface(kg, &sd, 0.0f, PATH_RAY_SHADOW); throughput *= shader_bsdf_transparency(kg, &sd); ray->P = ray_offset(sd.P, -sd.Ng); if(ray->t != FLT_MAX) ray->D = normalize_len(Pend - ray->P, &ray->t); shader_release(kg, &sd); bounce++; } } } #endif return result; } __device float4 kernel_path_progressive(KernelGlobals *kg, RNG *rng, int sample, Ray ray, __global float *buffer) { /* initialize */ PathRadiance L; float3 throughput = make_float3(1.0f, 1.0f, 1.0f); float L_transparent = 0.0f; path_radiance_init(&L, kernel_data.film.use_light_pass); float min_ray_pdf = FLT_MAX; float ray_pdf = 0.0f; PathState state; int rng_offset = PRNG_BASE_NUM; path_state_init(&state); /* path iteration */ for(;; rng_offset += PRNG_BOUNCE_NUM) { /* intersect scene */ Intersection isect; uint visibility = path_state_ray_visibility(kg, &state); if(!scene_intersect(kg, &ray, visibility, &isect)) { /* eval background shader if nothing hit */ if(kernel_data.background.transparent && (state.flag & PATH_RAY_CAMERA)) { L_transparent += average(throughput); #ifdef __PASSES__ if(!(kernel_data.film.pass_flag & PASS_BACKGROUND)) #endif break; } #ifdef __BACKGROUND__ /* sample background shader */ float3 L_background = indirect_background(kg, &ray, state.flag, ray_pdf); path_radiance_accum_background(&L, throughput, L_background, state.bounce); #endif break; } /* setup shading */ ShaderData sd; shader_setup_from_ray(kg, &sd, &isect, &ray); float rbsdf = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF); shader_eval_surface(kg, &sd, rbsdf, state.flag); kernel_write_data_passes(kg, buffer, &L, &sd, sample, state.flag, throughput); /* blurring of bsdf after bounces, for rays that have a small likelihood * of following this particular path (diffuse, rough glossy) */ if(kernel_data.integrator.filter_glossy != FLT_MAX) { float blur_pdf = kernel_data.integrator.filter_glossy*min_ray_pdf; if(blur_pdf < 1.0f) { float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f; shader_bsdf_blur(kg, &sd, blur_roughness); } } /* holdout */ #ifdef __HOLDOUT__ if((sd.flag & (SD_HOLDOUT|SD_HOLDOUT_MASK)) && (state.flag & PATH_RAY_CAMERA)) { if(kernel_data.background.transparent) { float3 holdout_weight; if(sd.flag & SD_HOLDOUT_MASK) holdout_weight = make_float3(1.0f, 1.0f, 1.0f); else holdout_weight = shader_holdout_eval(kg, &sd); /* any throughput is ok, should all be identical here */ L_transparent += average(holdout_weight*throughput); } if(sd.flag & SD_HOLDOUT_MASK) { shader_release(kg, &sd); break; } } #endif #ifdef __EMISSION__ /* emission */ if(sd.flag & SD_EMISSION) { float3 emission = indirect_emission(kg, &sd, isect.t, state.flag, ray_pdf); path_radiance_accum_emission(&L, throughput, emission, state.bounce); } #endif /* path termination. this is a strange place to put the termination, it's * mainly due to the mixed in MIS that we use. gives too many unneeded * shader evaluations, only need emission if we are going to terminate */ float probability = path_state_terminate_probability(kg, &state, throughput); float terminate = path_rng(kg, rng, sample, rng_offset + PRNG_TERMINATE); if(terminate >= probability) { shader_release(kg, &sd); break; } throughput /= probability; #ifdef __AO__ /* ambient occlusion */ if(kernel_data.integrator.use_ambient_occlusion) { /* todo: solve correlation */ float bsdf_u = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_U); float bsdf_v = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_V); float3 ao_D; float ao_pdf; sample_cos_hemisphere(sd.N, bsdf_u, bsdf_v, &ao_D, &ao_pdf); if(dot(sd.Ng, ao_D) > 0.0f && ao_pdf != 0.0f) { Ray light_ray; float3 ao_shadow; light_ray.P = ray_offset(sd.P, sd.Ng); light_ray.D = ao_D; light_ray.t = kernel_data.background.ao_distance; #ifdef __MOTION__ light_ray.time = sd.time; #endif if(!shadow_blocked(kg, &state, &light_ray, &ao_shadow)) { float3 ao_bsdf = shader_bsdf_diffuse(kg, &sd)*kernel_data.background.ao_factor; path_radiance_accum_ao(&L, throughput, ao_bsdf, ao_shadow, state.bounce); } } } #endif #ifdef __EMISSION__ if(kernel_data.integrator.use_direct_light) { /* sample illumination from lights to find path contribution */ if(sd.flag & SD_BSDF_HAS_EVAL) { float light_t = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT); float light_o = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_F); float light_u = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_U); float light_v = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_V); Ray light_ray; BsdfEval L_light; bool is_lamp; #ifdef __MOTION__ light_ray.time = sd.time; #endif if(direct_emission(kg, &sd, -1, light_t, light_o, light_u, light_v, &light_ray, &L_light, &is_lamp)) { /* trace shadow ray */ float3 shadow; if(!shadow_blocked(kg, &state, &light_ray, &shadow)) { /* accumulate */ path_radiance_accum_light(&L, throughput, &L_light, shadow, state.bounce, is_lamp); } } } } #endif /* no BSDF? we can stop here */ if(!(sd.flag & SD_BSDF)) { shader_release(kg, &sd); break; } /* sample BSDF */ float bsdf_pdf; BsdfEval bsdf_eval; float3 bsdf_omega_in; differential3 bsdf_domega_in; float bsdf_u = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_U); float bsdf_v = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_V); int label; label = shader_bsdf_sample(kg, &sd, bsdf_u, bsdf_v, &bsdf_eval, &bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf); shader_release(kg, &sd); if(bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval)) break; /* modify throughput */ path_radiance_bsdf_bounce(&L, &throughput, &bsdf_eval, bsdf_pdf, state.bounce, label); /* set labels */ if(!(label & LABEL_TRANSPARENT)) { ray_pdf = bsdf_pdf; min_ray_pdf = fminf(bsdf_pdf, min_ray_pdf); } /* update path state */ path_state_next(kg, &state, label); /* setup ray */ ray.P = ray_offset(sd.P, (label & LABEL_TRANSMIT)? -sd.Ng: sd.Ng); ray.D = bsdf_omega_in; ray.t = FLT_MAX; #ifdef __RAY_DIFFERENTIALS__ ray.dP = sd.dP; ray.dD = bsdf_domega_in; #endif } float3 L_sum = path_radiance_sum(kg, &L); #ifdef __CLAMP_SAMPLE__ path_radiance_clamp(&L, &L_sum, kernel_data.integrator.sample_clamp); #endif kernel_write_light_passes(kg, buffer, &L, sample); return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent); } #ifdef __NON_PROGRESSIVE__ __device void kernel_path_indirect(KernelGlobals *kg, RNG *rng, int sample, Ray ray, __global float *buffer, float3 throughput, float min_ray_pdf, float ray_pdf, PathState state, int rng_offset, PathRadiance *L) { /* path iteration */ for(;; rng_offset += PRNG_BOUNCE_NUM) { /* intersect scene */ Intersection isect; uint visibility = path_state_ray_visibility(kg, &state); if(!scene_intersect(kg, &ray, visibility, &isect)) { #ifdef __BACKGROUND__ /* sample background shader */ float3 L_background = indirect_background(kg, &ray, state.flag, ray_pdf); path_radiance_accum_background(L, throughput, L_background, state.bounce); #endif break; } /* setup shading */ ShaderData sd; shader_setup_from_ray(kg, &sd, &isect, &ray); float rbsdf = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF); shader_eval_surface(kg, &sd, rbsdf, state.flag); shader_merge_closures(kg, &sd); /* blurring of bsdf after bounces, for rays that have a small likelihood * of following this particular path (diffuse, rough glossy) */ if(kernel_data.integrator.filter_glossy != FLT_MAX) { float blur_pdf = kernel_data.integrator.filter_glossy*min_ray_pdf; if(blur_pdf < 1.0f) { float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f; shader_bsdf_blur(kg, &sd, blur_roughness); } } #ifdef __EMISSION__ /* emission */ if(sd.flag & SD_EMISSION) { float3 emission = indirect_emission(kg, &sd, isect.t, state.flag, ray_pdf); path_radiance_accum_emission(L, throughput, emission, state.bounce); } #endif /* path termination. this is a strange place to put the termination, it's * mainly due to the mixed in MIS that we use. gives too many unneeded * shader evaluations, only need emission if we are going to terminate */ float probability = path_state_terminate_probability(kg, &state, throughput); float terminate = path_rng(kg, rng, sample, rng_offset + PRNG_TERMINATE); if(terminate >= probability) { shader_release(kg, &sd); break; } throughput /= probability; #ifdef __AO__ /* ambient occlusion */ if(kernel_data.integrator.use_ambient_occlusion) { /* todo: solve correlation */ float bsdf_u = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_U); float bsdf_v = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_V); float3 ao_D; float ao_pdf; sample_cos_hemisphere(sd.N, bsdf_u, bsdf_v, &ao_D, &ao_pdf); if(dot(sd.Ng, ao_D) > 0.0f && ao_pdf != 0.0f) { Ray light_ray; float3 ao_shadow; light_ray.P = ray_offset(sd.P, sd.Ng); light_ray.D = ao_D; light_ray.t = kernel_data.background.ao_distance; #ifdef __MOTION__ light_ray.time = sd.time; #endif if(!shadow_blocked(kg, &state, &light_ray, &ao_shadow)) { float3 ao_bsdf = shader_bsdf_diffuse(kg, &sd)*kernel_data.background.ao_factor; path_radiance_accum_ao(L, throughput, ao_bsdf, ao_shadow, state.bounce); } } } #endif #ifdef __EMISSION__ if(kernel_data.integrator.use_direct_light) { /* sample illumination from lights to find path contribution */ if(sd.flag & SD_BSDF_HAS_EVAL) { float light_t = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT); float light_o = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_F); float light_u = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_U); float light_v = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_V); Ray light_ray; BsdfEval L_light; bool is_lamp; #ifdef __MOTION__ light_ray.time = sd.time; #endif /* sample random light */ if(direct_emission(kg, &sd, -1, light_t, light_o, light_u, light_v, &light_ray, &L_light, &is_lamp)) { /* trace shadow ray */ float3 shadow; if(!shadow_blocked(kg, &state, &light_ray, &shadow)) { /* accumulate */ path_radiance_accum_light(L, throughput, &L_light, shadow, state.bounce, is_lamp); } } } } #endif /* no BSDF? we can stop here */ if(!(sd.flag & SD_BSDF)) { shader_release(kg, &sd); break; } /* sample BSDF */ float bsdf_pdf; BsdfEval bsdf_eval; float3 bsdf_omega_in; differential3 bsdf_domega_in; float bsdf_u = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_U); float bsdf_v = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_V); int label; label = shader_bsdf_sample(kg, &sd, bsdf_u, bsdf_v, &bsdf_eval, &bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf); shader_release(kg, &sd); if(bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval)) break; /* modify throughput */ path_radiance_bsdf_bounce(L, &throughput, &bsdf_eval, bsdf_pdf, state.bounce, label); /* set labels */ if(!(label & LABEL_TRANSPARENT)) { ray_pdf = bsdf_pdf; min_ray_pdf = fminf(bsdf_pdf, min_ray_pdf); } /* update path state */ path_state_next(kg, &state, label); /* setup ray */ ray.P = ray_offset(sd.P, (label & LABEL_TRANSMIT)? -sd.Ng: sd.Ng); ray.D = bsdf_omega_in; ray.t = FLT_MAX; #ifdef __RAY_DIFFERENTIALS__ ray.dP = sd.dP; ray.dD = bsdf_domega_in; #endif } } __device float4 kernel_path_non_progressive(KernelGlobals *kg, RNG *rng, int sample, Ray ray, __global float *buffer) { /* initialize */ PathRadiance L; float3 throughput = make_float3(1.0f, 1.0f, 1.0f); float L_transparent = 0.0f; path_radiance_init(&L, kernel_data.film.use_light_pass); float ray_pdf = 0.0f; PathState state; int rng_offset = PRNG_BASE_NUM; path_state_init(&state); for(;; rng_offset += PRNG_BOUNCE_NUM) { /* intersect scene */ Intersection isect; uint visibility = path_state_ray_visibility(kg, &state); if(!scene_intersect(kg, &ray, visibility, &isect)) { /* eval background shader if nothing hit */ if(kernel_data.background.transparent) { L_transparent += average(throughput); #ifdef __PASSES__ if(!(kernel_data.film.pass_flag & PASS_BACKGROUND)) #endif break; } #ifdef __BACKGROUND__ /* sample background shader */ float3 L_background = indirect_background(kg, &ray, state.flag, ray_pdf); path_radiance_accum_background(&L, throughput, L_background, state.bounce); #endif break; } /* setup shading */ ShaderData sd; shader_setup_from_ray(kg, &sd, &isect, &ray); float rbsdf = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF); shader_eval_surface(kg, &sd, rbsdf, state.flag); shader_merge_closures(kg, &sd); kernel_write_data_passes(kg, buffer, &L, &sd, sample, state.flag, throughput); /* holdout */ #ifdef __HOLDOUT__ if((sd.flag & (SD_HOLDOUT|SD_HOLDOUT_MASK))) { if(kernel_data.background.transparent) { float3 holdout_weight; if(sd.flag & SD_HOLDOUT_MASK) holdout_weight = make_float3(1.0f, 1.0f, 1.0f); else holdout_weight = shader_holdout_eval(kg, &sd); /* any throughput is ok, should all be identical here */ L_transparent += average(holdout_weight*throughput); } if(sd.flag & SD_HOLDOUT_MASK) { shader_release(kg, &sd); break; } } #endif #ifdef __EMISSION__ /* emission */ if(sd.flag & SD_EMISSION) { float3 emission = indirect_emission(kg, &sd, isect.t, state.flag, ray_pdf); path_radiance_accum_emission(&L, throughput, emission, state.bounce); } #endif /* transparency termination */ if(state.flag & PATH_RAY_TRANSPARENT) { /* path termination. this is a strange place to put the termination, it's * mainly due to the mixed in MIS that we use. gives too many unneeded * shader evaluations, only need emission if we are going to terminate */ float probability = path_state_terminate_probability(kg, &state, throughput); float terminate = path_rng(kg, rng, sample, rng_offset + PRNG_TERMINATE); if(terminate >= probability) { shader_release(kg, &sd); break; } throughput /= probability; } #ifdef __AO__ /* ambient occlusion */ if(kernel_data.integrator.use_ambient_occlusion) { int num_samples = kernel_data.integrator.ao_samples; float num_samples_inv = 1.0f/num_samples; float ao_factor = kernel_data.background.ao_factor; for(int j = 0; j < num_samples; j++) { /* todo: solve correlation */ float bsdf_u = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_BSDF_U); float bsdf_v = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_BSDF_V); float3 ao_D; float ao_pdf; sample_cos_hemisphere(sd.N, bsdf_u, bsdf_v, &ao_D, &ao_pdf); if(dot(sd.Ng, ao_D) > 0.0f && ao_pdf != 0.0f) { Ray light_ray; float3 ao_shadow; light_ray.P = ray_offset(sd.P, sd.Ng); light_ray.D = ao_D; light_ray.t = kernel_data.background.ao_distance; #ifdef __MOTION__ light_ray.time = sd.time; #endif if(!shadow_blocked(kg, &state, &light_ray, &ao_shadow)) { float3 ao_bsdf = shader_bsdf_diffuse(kg, &sd)*ao_factor; path_radiance_accum_ao(&L, throughput*num_samples_inv, ao_bsdf, ao_shadow, state.bounce); } } } } #endif #ifdef __EMISSION__ /* sample illumination from lights to find path contribution */ if(sd.flag & SD_BSDF_HAS_EVAL) { Ray light_ray; BsdfEval L_light; bool is_lamp; #ifdef __MOTION__ light_ray.time = sd.time; #endif /* lamp sampling */ for(int i = 0; i < kernel_data.integrator.num_all_lights; i++) { int num_samples = light_select_num_samples(kg, i); float num_samples_inv = 1.0f/(num_samples*kernel_data.integrator.num_all_lights); if(kernel_data.integrator.pdf_triangles != 0.0f) num_samples_inv *= 0.5f; for(int j = 0; j < num_samples; j++) { float light_u = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_LIGHT_U); float light_v = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_LIGHT_V); if(direct_emission(kg, &sd, i, 0.0f, 0.0f, light_u, light_v, &light_ray, &L_light, &is_lamp)) { /* trace shadow ray */ float3 shadow; if(!shadow_blocked(kg, &state, &light_ray, &shadow)) { /* accumulate */ path_radiance_accum_light(&L, throughput*num_samples_inv, &L_light, shadow, state.bounce, is_lamp); } } } } /* mesh light sampling */ if(kernel_data.integrator.pdf_triangles != 0.0f) { int num_samples = kernel_data.integrator.mesh_light_samples; float num_samples_inv = 1.0f/num_samples; if(kernel_data.integrator.num_all_lights) num_samples_inv *= 0.5f; for(int j = 0; j < num_samples; j++) { float light_t = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_LIGHT); float light_u = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_LIGHT_U); float light_v = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_LIGHT_V); /* only sample triangle lights */ if(kernel_data.integrator.num_all_lights) light_t = 0.5f*light_t; if(direct_emission(kg, &sd, -1, light_t, 0.0f, light_u, light_v, &light_ray, &L_light, &is_lamp)) { /* trace shadow ray */ float3 shadow; if(!shadow_blocked(kg, &state, &light_ray, &shadow)) { /* accumulate */ path_radiance_accum_light(&L, throughput*num_samples_inv, &L_light, shadow, state.bounce, is_lamp); } } } } } #endif for(int i = 0; i< sd.num_closure; i++) { const ShaderClosure *sc = &sd.closure[i]; if(!CLOSURE_IS_BSDF(sc->type)) continue; /* transparency is not handled here, but in outer loop */ if(sc->type == CLOSURE_BSDF_TRANSPARENT_ID) continue; int num_samples; if(CLOSURE_IS_BSDF_DIFFUSE(sc->type)) num_samples = kernel_data.integrator.diffuse_samples; else if(CLOSURE_IS_BSDF_GLOSSY(sc->type)) num_samples = kernel_data.integrator.glossy_samples; else num_samples = kernel_data.integrator.transmission_samples; float num_samples_inv = 1.0f/num_samples; for(int j = 0; j < num_samples; j++) { /* sample BSDF */ float bsdf_pdf; BsdfEval bsdf_eval; float3 bsdf_omega_in; differential3 bsdf_domega_in; float bsdf_u = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_BSDF_U); float bsdf_v = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_BSDF_V); int label; label = shader_bsdf_sample_closure(kg, &sd, sc, bsdf_u, bsdf_v, &bsdf_eval, &bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf); if(bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval)) continue; /* modify throughput */ float3 tp = throughput; path_radiance_bsdf_bounce(&L, &tp, &bsdf_eval, bsdf_pdf, state.bounce, label); /* set labels */ float min_ray_pdf = FLT_MAX; if(!(label & LABEL_TRANSPARENT)) min_ray_pdf = fminf(bsdf_pdf, min_ray_pdf); /* modify path state */ PathState ps = state; path_state_next(kg, &ps, label); /* setup ray */ Ray bsdf_ray; bsdf_ray.P = ray_offset(sd.P, (label & LABEL_TRANSMIT)? -sd.Ng: sd.Ng); bsdf_ray.D = bsdf_omega_in; bsdf_ray.t = FLT_MAX; #ifdef __RAY_DIFFERENTIALS__ bsdf_ray.dP = sd.dP; bsdf_ray.dD = bsdf_domega_in; #endif #ifdef __MOTION__ bsdf_ray.time = sd.time; #endif kernel_path_indirect(kg, rng, sample*num_samples, bsdf_ray, buffer, tp*num_samples_inv, min_ray_pdf, bsdf_pdf, ps, rng_offset+PRNG_BOUNCE_NUM, &L); } } /* continue in case of transparency */ throughput *= shader_bsdf_transparency(kg, &sd); shader_release(kg, &sd); if(is_zero(throughput)) break; path_state_next(kg, &state, LABEL_TRANSPARENT); ray.P = ray_offset(sd.P, -sd.Ng); } float3 L_sum = path_radiance_sum(kg, &L); #ifdef __CLAMP_SAMPLE__ path_radiance_clamp(&L, &L_sum, kernel_data.integrator.sample_clamp); #endif kernel_write_light_passes(kg, buffer, &L, sample); return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent); } #endif __device void kernel_path_trace(KernelGlobals *kg, __global float *buffer, __global uint *rng_state, int sample, int x, int y, int offset, int stride) { /* buffer offset */ int index = offset + x + y*stride; int pass_stride = kernel_data.film.pass_stride; rng_state += index; buffer += index*pass_stride; /* initialize random numbers */ RNG rng; float filter_u; float filter_v; path_rng_init(kg, rng_state, sample, &rng, x, y, &filter_u, &filter_v); /* sample camera ray */ Ray ray; float lens_u = path_rng(kg, &rng, sample, PRNG_LENS_U); float lens_v = path_rng(kg, &rng, sample, PRNG_LENS_V); #ifdef __MOTION__ float time = path_rng(kg, &rng, sample, PRNG_TIME); #else float time = 0.0f; #endif camera_sample(kg, x, y, filter_u, filter_v, lens_u, lens_v, time, &ray); /* integrate */ float4 L; if (ray.t != 0.0f) { #ifdef __NON_PROGRESSIVE__ if(kernel_data.integrator.progressive) #endif L = kernel_path_progressive(kg, &rng, sample, ray, buffer); #ifdef __NON_PROGRESSIVE__ else L = kernel_path_non_progressive(kg, &rng, sample, ray, buffer); #endif } else L = make_float4(0.f, 0.f, 0.f, 0.f); /* accumulate result in output buffer */ kernel_write_pass_float4(buffer, sample, L); path_rng_end(kg, rng_state, rng); } CCL_NAMESPACE_END