# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### # TODO from mathutils import Matrix, Vector, geometry import bpy from bpy.types import Operator DEG_TO_RAD = 0.017453292519943295 # pi/180.0 SMALL_NUM = 0.000000001 BIG_NUM = 1e15 global USER_FILL_HOLES global USER_FILL_HOLES_QUALITY USER_FILL_HOLES = None USER_FILL_HOLES_QUALITY = None def pointInTri2D(v, v1, v2, v3): key = v1.x, v1.y, v2.x, v2.y, v3.x, v3.y # Commented because its slower to do the bounds check, we should really cache the bounds info for each face. ''' # BOUNDS CHECK xmin= 1000000 ymin= 1000000 xmax= -1000000 ymax= -1000000 for i in (0,2,4): x= key[i] y= key[i+1] if xmaxx: xmin= x if ymin>y: ymin= y x= v.x y= v.y if xxmax or y < ymin or y > ymax: return False # Done with bounds check ''' try: mtx = dict_matrix[key] if not mtx: return False except: side1 = v2 - v1 side2 = v3 - v1 nor = side1.cross(side2) mtx = Matrix((side1, side2, nor)) # Zero area 2d tri, even tho we throw away zero area faces # the projection UV can result in a zero area UV. if not mtx.determinant(): dict_matrix[key] = None return False mtx.invert() dict_matrix[key] = mtx uvw = (v - v1) * mtx return 0 <= uvw[0] and 0 <= uvw[1] and uvw[0] + uvw[1] <= 1 def boundsIsland(faces): minx = maxx = faces[0].uv[0][0] # Set initial bounds. miny = maxy = faces[0].uv[0][1] # print len(faces), minx, maxx, miny , maxy for f in faces: for uv in f.uv: x= uv.x y= uv.y if xmaxx: maxx= x if y>maxy: maxy= y return minx, miny, maxx, maxy """ def boundsEdgeLoop(edges): minx = maxx = edges[0][0] # Set initial bounds. miny = maxy = edges[0][1] # print len(faces), minx, maxx, miny , maxy for ed in edges: for pt in ed: print 'ass' x= pt[0] y= pt[1] if xmaxx: x= maxx if y>maxy: y= maxy return minx, miny, maxx, maxy """ # Turns the islands into a list of unpordered edges (Non internal) # Only for UV's # only returns outline edges for intersection tests. and unique points. def island2Edge(island): # Vert index edges edges = {} unique_points= {} for f in island: f_uvkey= map(tuple, f.uv) for vIdx, edkey in enumerate(f.edge_keys): unique_points[f_uvkey[vIdx]] = f.uv[vIdx] if f.v[vIdx].index > f.v[vIdx-1].index: i1= vIdx-1; i2= vIdx else: i1= vIdx; i2= vIdx-1 try: edges[ f_uvkey[i1], f_uvkey[i2] ] *= 0 # sets any edge with more then 1 user to 0 are not returned. except: edges[ f_uvkey[i1], f_uvkey[i2] ] = (f.uv[i1] - f.uv[i2]).length, # If 2 are the same then they will be together, but full [a,b] order is not correct. # Sort by length length_sorted_edges = [(Vector(key[0]), Vector(key[1]), value) for key, value in edges.items() if value != 0] try: length_sorted_edges.sort(key = lambda A: -A[2]) # largest first except: length_sorted_edges.sort(lambda A, B: cmp(B[2], A[2])) # Its okay to leave the length in there. #for e in length_sorted_edges: # e.pop(2) # return edges and unique points return length_sorted_edges, [v.to_3d() for v in unique_points.values()] # ========================= NOT WORKING???? # Find if a points inside an edge loop, unordered. # pt is and x/y # edges are a non ordered loop of edges. # offsets are the edge x and y offset. """ def pointInEdges(pt, edges): # x1 = pt[0] y1 = pt[1] # Point to the left of this line. x2 = -100000 y2 = -10000 intersectCount = 0 for ed in edges: xi, yi = lineIntersection2D(x1,y1, x2,y2, ed[0][0], ed[0][1], ed[1][0], ed[1][1]) if xi is not None: # Is there an intersection. intersectCount+=1 return intersectCount % 2 """ def pointInIsland(pt, island): vec1, vec2, vec3 = Vector(), Vector(), Vector() for f in island: vec1.x, vec1.y = f.uv[0] vec2.x, vec2.y = f.uv[1] vec3.x, vec3.y = f.uv[2] if pointInTri2D(pt, vec1, vec2, vec3): return True if len(f.v) == 4: vec1.x, vec1.y = f.uv[0] vec2.x, vec2.y = f.uv[2] vec3.x, vec3.y = f.uv[3] if pointInTri2D(pt, vec1, vec2, vec3): return True return False # box is (left,bottom, right, top) def islandIntersectUvIsland(source, target, SourceOffset): # Is 1 point in the box, inside the vertLoops edgeLoopsSource = source[6] # Pretend this is offset edgeLoopsTarget = target[6] # Edge intersect test for ed in edgeLoopsSource: for seg in edgeLoopsTarget: i = geometry.intersect_line_line_2d(seg[0], seg[1], SourceOffset+ed[0], SourceOffset+ed[1], ) if i: return 1 # LINE INTERSECTION # 1 test for source being totally inside target SourceOffset.resize_3d() for pv in source[7]: if pointInIsland(pv+SourceOffset, target[0]): return 2 # SOURCE INSIDE TARGET # 2 test for a part of the target being totally inside the source. for pv in target[7]: if pointInIsland(pv-SourceOffset, source[0]): return 3 # PART OF TARGET INSIDE SOURCE. return 0 # NO INTERSECTION # Returns the X/y Bounds of a list of vectors. def testNewVecLs2DRotIsBetter(vecs, mat=-1, bestAreaSoFar = -1): # UV's will never extend this far. minx = miny = BIG_NUM maxx = maxy = -BIG_NUM for i, v in enumerate(vecs): # Do this along the way if mat != -1: v = vecs[i] = mat * v x= v.x y= v.y if xmaxx: maxx= x if y>maxy: maxy= y # Specific to this algo, bail out if we get bigger then the current area if bestAreaSoFar != -1 and (maxx-minx) * (maxy-miny) > bestAreaSoFar: return (BIG_NUM, None), None w = maxx-minx h = maxy-miny return (w*h, w,h), vecs # Area, vecs def optiRotateUvIsland(faces): global currentArea # Best-fit Rotation def best2dRotation(uvVecs, MAT1, MAT2): global currentArea newAreaPos, newfaceProjectionGroupListPos =\ testNewVecLs2DRotIsBetter(uvVecs[:], MAT1, currentArea[0]) # Why do I use newpos here? May as well give the best area to date for an early bailout # some slight speed increase in this. # If the new rotation is smaller then the existing, we can # avoid copying a list and overwrite the old, crappy one. if newAreaPos[0] < currentArea[0]: newAreaNeg, newfaceProjectionGroupListNeg =\ testNewVecLs2DRotIsBetter(uvVecs, MAT2, newAreaPos[0]) # Reuse the old bigger list. else: newAreaNeg, newfaceProjectionGroupListNeg =\ testNewVecLs2DRotIsBetter(uvVecs[:], MAT2, currentArea[0]) # Cant reuse, make a copy. # Now from the 3 options we need to discover which to use # we have cerrentArea/newAreaPos/newAreaNeg bestArea = min(currentArea[0], newAreaPos[0], newAreaNeg[0]) if currentArea[0] == bestArea: return uvVecs elif newAreaPos[0] == bestArea: uvVecs = newfaceProjectionGroupListPos currentArea = newAreaPos elif newAreaNeg[0] == bestArea: uvVecs = newfaceProjectionGroupListNeg currentArea = newAreaNeg return uvVecs # Serialized UV coords to Vectors uvVecs = [uv for f in faces for uv in f.uv] # Theres a small enough number of these to hard code it # rather then a loop. # Will not modify anything currentArea, dummy =\ testNewVecLs2DRotIsBetter(uvVecs) # Try a 45d rotation newAreaPos, newfaceProjectionGroupListPos = testNewVecLs2DRotIsBetter(uvVecs[:], ROTMAT_2D_POS_45D, currentArea[0]) if newAreaPos[0] < currentArea[0]: uvVecs = newfaceProjectionGroupListPos currentArea = newAreaPos # 45d done # Testcase different rotations and find the one that best fits in a square for ROTMAT in RotMatStepRotation: uvVecs = best2dRotation(uvVecs, ROTMAT[0], ROTMAT[1]) # Only if you want it, make faces verticle! if currentArea[1] > currentArea[2]: # Rotate 90d # Work directly on the list, no need to return a value. testNewVecLs2DRotIsBetter(uvVecs, ROTMAT_2D_POS_90D) # Now write the vectors back to the face UV's i = 0 # count the serialized uv/vectors for f in faces: #f.uv = [uv for uv in uvVecs[i:len(f)+i] ] for j, k in enumerate(range(i, len(f.v)+i)): f.uv[j][:] = uvVecs[k] i += len(f.v) # Takes an island list and tries to find concave, hollow areas to pack smaller islands into. def mergeUvIslands(islandList): global USER_FILL_HOLES global USER_FILL_HOLES_QUALITY # Pack islands to bottom LHS # Sync with island #islandTotFaceArea = [] # A list of floats, each island area #islandArea = [] # a list of tuples ( area, w,h) decoratedIslandList = [] islandIdx = len(islandList) while islandIdx: islandIdx-=1 minx, miny, maxx, maxy = boundsIsland(islandList[islandIdx]) w, h = maxx-minx, maxy-miny totFaceArea = 0 offset= Vector((minx, miny)) for f in islandList[islandIdx]: for uv in f.uv: uv -= offset totFaceArea += f.area islandBoundsArea = w*h efficiency = abs(islandBoundsArea - totFaceArea) # UV Edge list used for intersections as well as unique points. edges, uniqueEdgePoints = island2Edge(islandList[islandIdx]) decoratedIslandList.append([islandList[islandIdx], totFaceArea, efficiency, islandBoundsArea, w,h, edges, uniqueEdgePoints]) # Sort by island bounding box area, smallest face area first. # no.. chance that to most simple edge loop first. decoratedIslandListAreaSort =decoratedIslandList[:] decoratedIslandListAreaSort.sort(key = lambda A: A[3]) # sort by efficiency, Least Efficient first. decoratedIslandListEfficSort = decoratedIslandList[:] # decoratedIslandListEfficSort.sort(lambda A, B: cmp(B[2], A[2])) decoratedIslandListEfficSort.sort(key = lambda A: -A[2]) # ================================================== THESE CAN BE TWEAKED. # This is a quality value for the number of tests. # from 1 to 4, generic quality value is from 1 to 100 USER_STEP_QUALITY = ((USER_FILL_HOLES_QUALITY - 1) / 25.0) + 1 # If 100 will test as long as there is enough free space. # this is rarely enough, and testing takes a while, so lower quality speeds this up. # 1 means they have the same quality USER_FREE_SPACE_TO_TEST_QUALITY = 1 + (((100 - USER_FILL_HOLES_QUALITY)/100.0) *5) #print 'USER_STEP_QUALITY', USER_STEP_QUALITY #print 'USER_FREE_SPACE_TO_TEST_QUALITY', USER_FREE_SPACE_TO_TEST_QUALITY removedCount = 0 areaIslandIdx = 0 ctrl = Window.Qual.CTRL BREAK= False while areaIslandIdx < len(decoratedIslandListAreaSort) and not BREAK: sourceIsland = decoratedIslandListAreaSort[areaIslandIdx] # Already packed? if not sourceIsland[0]: areaIslandIdx+=1 else: efficIslandIdx = 0 while efficIslandIdx < len(decoratedIslandListEfficSort) and not BREAK: if Window.GetKeyQualifiers() & ctrl: BREAK= True break # Now we have 2 islands, if the efficiency of the islands lowers theres an # increasing likely hood that we can fit merge into the bigger UV island. # this ensures a tight fit. # Just use figures we have about user/unused area to see if they might fit. targetIsland = decoratedIslandListEfficSort[efficIslandIdx] if sourceIsland[0] == targetIsland[0] or\ not targetIsland[0] or\ not sourceIsland[0]: pass else: #~ ([island, totFaceArea, efficiency, islandArea, w,h]) # Wasted space on target is greater then UV bounding island area. #~ if targetIsland[3] > (sourceIsland[2]) and\ # #~ print USER_FREE_SPACE_TO_TEST_QUALITY if targetIsland[2] > (sourceIsland[1] * USER_FREE_SPACE_TO_TEST_QUALITY) and\ targetIsland[4] > sourceIsland[4] and\ targetIsland[5] > sourceIsland[5]: # DEBUG # print '%.10f %.10f' % (targetIsland[3], sourceIsland[1]) # These enough spare space lets move the box until it fits # How many times does the source fit into the target x/y blockTestXUnit = targetIsland[4]/sourceIsland[4] blockTestYUnit = targetIsland[5]/sourceIsland[5] boxLeft = 0 # Distance we can move between whilst staying inside the targets bounds. testWidth = targetIsland[4] - sourceIsland[4] testHeight = targetIsland[5] - sourceIsland[5] # Increment we move each test. x/y xIncrement = (testWidth / (blockTestXUnit * ((USER_STEP_QUALITY/50)+0.1))) yIncrement = (testHeight / (blockTestYUnit * ((USER_STEP_QUALITY/50)+0.1))) # Make sure were not moving less then a 3rg of our width/height if xIncrement testWidth: boxBottom += yIncrement boxLeft = 0.0 else: boxLeft += xIncrement ##print testcount efficIslandIdx+=1 areaIslandIdx+=1 # Remove empty islands i = len(islandList) while i: i-=1 if not islandList[i]: del islandList[i] # Can increment islands removed here. # Takes groups of faces. assumes face groups are UV groups. def getUvIslands(faceGroups, me): # Get seams so we don't cross over seams edge_seams = {} # should be a set for ed in me.edges: if ed.use_seam: edge_seams[ed.key] = None # dummy var- use sets! # Done finding seams islandList = [] #XXX Window.DrawProgressBar(0.0, 'Splitting %d projection groups into UV islands:' % len(faceGroups)) #print '\tSplitting %d projection groups into UV islands:' % len(faceGroups), # Find grouped faces faceGroupIdx = len(faceGroups) while faceGroupIdx: faceGroupIdx-=1 faces = faceGroups[faceGroupIdx] if not faces: continue # Build edge dict edge_users = {} for i, f in enumerate(faces): for ed_key in f.edge_keys: if ed_key in edge_seams: # DELIMIT SEAMS! ;) edge_users[ed_key] = [] # so as not to raise an error else: try: edge_users[ed_key].append(i) except: edge_users[ed_key] = [i] # Modes # 0 - face not yet touched. # 1 - added to island list, and need to search # 2 - touched and searched - don't touch again. face_modes = [0] * len(faces) # initialize zero - untested. face_modes[0] = 1 # start the search with face 1 newIsland = [] newIsland.append(faces[0]) ok = True while ok: ok = True while ok: ok= False for i in range(len(faces)): if face_modes[i] == 1: # search for ed_key in faces[i].edge_keys: for ii in edge_users[ed_key]: if i != ii and face_modes[ii] == 0: face_modes[ii] = ok = 1 # mark as searched newIsland.append(faces[ii]) # mark as searched, don't look again. face_modes[i] = 2 islandList.append(newIsland) ok = False for i in range(len(faces)): if face_modes[i] == 0: newIsland = [] newIsland.append(faces[i]) face_modes[i] = ok = 1 break # if not ok will stop looping #XXX Window.DrawProgressBar(0.1, 'Optimizing Rotation for %i UV Islands' % len(islandList)) for island in islandList: optiRotateUvIsland(island) return islandList def packIslands(islandList): if USER_FILL_HOLES: #XXX Window.DrawProgressBar(0.1, 'Merging Islands (Ctrl: skip merge)...') mergeUvIslands(islandList) # Modify in place # Now we have UV islands, we need to pack them. # Make a synchronized list with the islands # so we can box pack the islands. packBoxes = [] # Keep a list of X/Y offset so we can save time by writing the # uv's and packed data in one pass. islandOffsetList = [] islandIdx = 0 while islandIdx < len(islandList): minx, miny, maxx, maxy = boundsIsland(islandList[islandIdx]) w, h = maxx-minx, maxy-miny if USER_ISLAND_MARGIN: minx -= USER_ISLAND_MARGIN# *w miny -= USER_ISLAND_MARGIN# *h maxx += USER_ISLAND_MARGIN# *w maxy += USER_ISLAND_MARGIN# *h # recalc width and height w, h = maxx-minx, maxy-miny if w < 0.00001 or h < 0.00001: del islandList[islandIdx] islandIdx -=1 continue '''Save the offset to be applied later, we could apply to the UVs now and allign them to the bottom left hand area of the UV coords like the box packer imagines they are but, its quicker just to remember their offset and apply the packing and offset in 1 pass ''' islandOffsetList.append((minx, miny)) # Add to boxList. use the island idx for the BOX id. packBoxes.append([0, 0, w, h]) islandIdx+=1 # Now we have a list of boxes to pack that syncs # with the islands. #print '\tPacking UV Islands...' #XXX Window.DrawProgressBar(0.7, 'Packing %i UV Islands...' % len(packBoxes) ) # time1 = time.time() packWidth, packHeight = geometry.box_pack_2d(packBoxes) # print 'Box Packing Time:', time.time() - time1 #if len(pa ckedLs) != len(islandList): # raise "Error packed boxes differs from original length" #print '\tWriting Packed Data to faces' #XXX Window.DrawProgressBar(0.8, 'Writing Packed Data to faces') # Sort by ID, so there in sync again islandIdx = len(islandList) # Having these here avoids divide by 0 if islandIdx: if USER_STRETCH_ASPECT: # Maximize to uv area?? Will write a normalize function. xfactor = 1.0 / packWidth yfactor = 1.0 / packHeight else: # Keep proportions. xfactor = yfactor = 1.0 / max(packWidth, packHeight) while islandIdx: islandIdx -=1 # Write the packed values to the UV's xoffset = packBoxes[islandIdx][0] - islandOffsetList[islandIdx][0] yoffset = packBoxes[islandIdx][1] - islandOffsetList[islandIdx][1] for f in islandList[islandIdx]: # Offsetting the UV's so they fit in there packed box for uv in f.uv: uv.x= (uv.x+xoffset) * xfactor uv.y= (uv.y+yoffset) * yfactor def VectoQuat(vec): vec = vec.normalized() return vec.to_track_quat('Z', 'X' if abs(vec.x) > 0.5 else 'Y').inverted() class thickface(object): __slost__= "v", "uv", "no", "area", "edge_keys" def __init__(self, face, uv_layer, mesh_verts): self.v = [mesh_verts[i] for i in face.vertices] self.uv = [uv_layer[i].uv for i in face.loop_indices] self.no = face.normal self.area = face.area self.edge_keys = face.edge_keys def main_consts(): from math import radians global ROTMAT_2D_POS_90D global ROTMAT_2D_POS_45D global RotMatStepRotation ROTMAT_2D_POS_90D = Matrix.Rotation(radians(90.0), 2) ROTMAT_2D_POS_45D = Matrix.Rotation(radians(45.0), 2) RotMatStepRotation = [] rot_angle = 22.5 #45.0/2 while rot_angle > 0.1: RotMatStepRotation.append([ Matrix.Rotation(radians(+rot_angle), 2), Matrix.Rotation(radians(-rot_angle), 2), ]) rot_angle = rot_angle/2.0 global ob ob = None def main(context, island_margin, projection_limit, user_area_weight, ): global USER_FILL_HOLES global USER_FILL_HOLES_QUALITY global USER_STRETCH_ASPECT global USER_ISLAND_MARGIN from math import cos import time global dict_matrix dict_matrix = {} # Constants: # Takes a list of faces that make up a UV island and rotate # until they optimally fit inside a square. global ROTMAT_2D_POS_90D global ROTMAT_2D_POS_45D global RotMatStepRotation main_consts() # Create the variables. USER_PROJECTION_LIMIT = projection_limit USER_ONLY_SELECTED_FACES = True USER_SHARE_SPACE = 1 # Only for hole filling. USER_STRETCH_ASPECT = 1 # Only for hole filling. USER_ISLAND_MARGIN = island_margin # Only for hole filling. USER_FILL_HOLES = 0 USER_FILL_HOLES_QUALITY = 50 # Only for hole filling. USER_VIEW_INIT = 0 # Only for hole filling. is_editmode = (context.active_object.mode == 'EDIT') if is_editmode: obList = [ob for ob in [context.active_object] if ob and ob.type == 'MESH'] else: obList = [ob for ob in context.selected_editable_objects if ob and ob.type == 'MESH'] USER_ONLY_SELECTED_FACES = False if not obList: raise('error, no selected mesh objects') # Reuse variable if len(obList) == 1: ob = "Unwrap %i Selected Mesh" else: ob = "Unwrap %i Selected Meshes" # HACK, loop until mouse is lifted. ''' while Window.GetMouseButtons() != 0: time.sleep(10) ''' #~ XXX if not Draw.PupBlock(ob % len(obList), pup_block): #~ XXX return #~ XXX del ob # Convert from being button types USER_PROJECTION_LIMIT_CONVERTED = cos(USER_PROJECTION_LIMIT * DEG_TO_RAD) USER_PROJECTION_LIMIT_HALF_CONVERTED = cos((USER_PROJECTION_LIMIT/2) * DEG_TO_RAD) # Toggle Edit mode is_editmode = (context.active_object.mode == 'EDIT') if is_editmode: bpy.ops.object.mode_set(mode='OBJECT') # Assume face select mode! an annoying hack to toggle face select mode because Mesh doesn't like faceSelectMode. if USER_SHARE_SPACE: # Sort by data name so we get consistent results obList.sort(key = lambda ob: ob.data.name) collected_islandList= [] #XXX Window.WaitCursor(1) time1 = time.time() # Tag as False so we don't operate on the same mesh twice. #XXX bpy.data.meshes.tag = False for me in bpy.data.meshes: me.tag = False for ob in obList: me = ob.data if me.tag or me.library: continue # Tag as used me.tag = True if not me.uv_textures: # Mesh has no UV Coords, don't bother. me.uv_textures.new() uv_layer = me.uv_layers.active.data me_verts = list(me.vertices) if USER_ONLY_SELECTED_FACES: meshFaces = [thickface(f, uv_layer, me_verts) for i, f in enumerate(me.polygons) if f.select] else: meshFaces = [thickface(f, uv_layer, me_verts) for i, f in enumerate(me.polygons)] if not meshFaces: continue #XXX Window.DrawProgressBar(0.1, 'SmartProj UV Unwrapper, mapping "%s", %i faces.' % (me.name, len(meshFaces))) # ======= # Generate a projection list from face normals, this is meant to be smart :) # make a list of face props that are in sync with meshFaces # Make a Face List that is sorted by area. # meshFaces = [] # meshFaces.sort( lambda a, b: cmp(b.area , a.area) ) # Biggest first. meshFaces.sort(key=lambda a: -a.area) # remove all zero area faces while meshFaces and meshFaces[-1].area <= SMALL_NUM: # Set their UV's to 0,0 for uv in meshFaces[-1].uv: uv.zero() meshFaces.pop() # Smallest first is slightly more efficient, but if the user cancels early then its better we work on the larger data. # Generate Projection Vecs # 0d is 1.0 # 180 IS -0.59846 # Initialize projectVecs if USER_VIEW_INIT: # Generate Projection projectVecs = [Vector(Window.GetViewVector()) * ob.matrix_world.inverted().to_3x3()] # We add to this along the way else: projectVecs = [] newProjectVec = meshFaces[0].no newProjectMeshFaces = [] # Popping stuffs it up. # Pretend that the most unique angle is ages away to start the loop off mostUniqueAngle = -1.0 # This is popped tempMeshFaces = meshFaces[:] # This while only gathers projection vecs, faces are assigned later on. while 1: # If theres none there then start with the largest face # add all the faces that are close. for fIdx in range(len(tempMeshFaces)-1, -1, -1): # Use half the angle limit so we don't overweight faces towards this # normal and hog all the faces. if newProjectVec.dot(tempMeshFaces[fIdx].no) > USER_PROJECTION_LIMIT_HALF_CONVERTED: newProjectMeshFaces.append(tempMeshFaces.pop(fIdx)) # Add the average of all these faces normals as a projectionVec averageVec = Vector((0.0, 0.0, 0.0)) if user_area_weight == 0.0: for fprop in newProjectMeshFaces: averageVec += fprop.no elif user_area_weight == 1.0: for fprop in newProjectMeshFaces: averageVec += fprop.no * fprop.area else: for fprop in newProjectMeshFaces: averageVec += fprop.no * ((fprop.area * user_area_weight) + (1.0 - user_area_weight)) if averageVec.x != 0 or averageVec.y != 0 or averageVec.z != 0: # Avoid NAN projectVecs.append(averageVec.normalized()) # Get the next vec! # Pick the face thats most different to all existing angles :) mostUniqueAngle = 1.0 # 1.0 is 0d. no difference. mostUniqueIndex = 0 # dummy for fIdx in range(len(tempMeshFaces)-1, -1, -1): angleDifference = -1.0 # 180d difference. # Get the closest vec angle we are to. for p in projectVecs: temp_angle_diff= p.dot(tempMeshFaces[fIdx].no) if angleDifference < temp_angle_diff: angleDifference= temp_angle_diff if angleDifference < mostUniqueAngle: # We have a new most different angle mostUniqueIndex = fIdx mostUniqueAngle = angleDifference if mostUniqueAngle < USER_PROJECTION_LIMIT_CONVERTED: #print 'adding', mostUniqueAngle, USER_PROJECTION_LIMIT, len(newProjectMeshFaces) # Now weight the vector to all its faces, will give a more direct projection # if the face its self was not representive of the normal from surrounding faces. newProjectVec = tempMeshFaces[mostUniqueIndex].no newProjectMeshFaces = [tempMeshFaces.pop(mostUniqueIndex)] else: if len(projectVecs) >= 1: # Must have at least 2 projections break # If there are only zero area faces then its possible # there are no projectionVecs if not len(projectVecs): Draw.PupMenu('error, no projection vecs where generated, 0 area faces can cause this.') return faceProjectionGroupList =[[] for i in range(len(projectVecs)) ] # MAP and Arrange # We know there are 3 or 4 faces here for fIdx in range(len(meshFaces)-1, -1, -1): fvec = meshFaces[fIdx].no i = len(projectVecs) # Initialize first bestAng = fvec.dot(projectVecs[0]) bestAngIdx = 0 # Cycle through the remaining, first already done while i-1: i-=1 newAng = fvec.dot(projectVecs[i]) if newAng > bestAng: # Reverse logic for dotvecs bestAng = newAng bestAngIdx = i # Store the area for later use. faceProjectionGroupList[bestAngIdx].append(meshFaces[fIdx]) # Cull faceProjectionGroupList, # Now faceProjectionGroupList is full of faces that face match the project Vecs list for i in range(len(projectVecs)): # Account for projectVecs having no faces. if not faceProjectionGroupList[i]: continue # Make a projection matrix from a unit length vector. MatQuat = VectoQuat(projectVecs[i]) # Get the faces UV's from the projected vertex. for f in faceProjectionGroupList[i]: f_uv = f.uv for j, v in enumerate(f.v): # XXX - note, between mathutils in 2.4 and 2.5 the order changed. f_uv[j][:] = (MatQuat * v.co).xy if USER_SHARE_SPACE: # Should we collect and pack later? islandList = getUvIslands(faceProjectionGroupList, me) collected_islandList.extend(islandList) else: # Should we pack the islands for this 1 object? islandList = getUvIslands(faceProjectionGroupList, me) packIslands(islandList) # update the mesh here if we need to. # We want to pack all in 1 go, so pack now if USER_SHARE_SPACE: #XXX Window.DrawProgressBar(0.9, "Box Packing for all objects...") packIslands(collected_islandList) print("Smart Projection time: %.2f" % (time.time() - time1)) # Window.DrawProgressBar(0.9, "Smart Projections done, time: %.2f sec" % (time.time() - time1)) if is_editmode: bpy.ops.object.mode_set(mode='EDIT') dict_matrix.clear() #XXX Window.DrawProgressBar(1.0, "") #XXX Window.WaitCursor(0) #XXX Window.RedrawAll() """ pup_block = [\ 'Projection',\ ('Selected Faces Only', USER_ONLY_SELECTED_FACES, 'Use only selected faces from all selected meshes.'),\ ('Init from view', USER_VIEW_INIT, 'The first projection will be from the view vector.'),\ '',\ 'UV Layout',\ ('Share Tex Space', USER_SHARE_SPACE, 'Objects Share texture space, map all objects into 1 uvmap.'),\ ('Stretch to bounds', USER_STRETCH_ASPECT, 'Stretch the final output to texture bounds.'),\ * ('Island Margin:', USER_ISLAND_MARGIN, 0.0, 0.5, ''),\ 'Fill in empty areas',\ ('Fill Holes', USER_FILL_HOLES, 'Fill in empty areas reduced texture waistage (slow).'),\ ('Fill Quality:', USER_FILL_HOLES_QUALITY, 1, 100, 'Depends on fill holes, how tightly to fill UV holes, (higher is slower)'),\ ] """ from bpy.props import FloatProperty class SmartProject(Operator): '''This script projection unwraps the selected faces of a mesh ''' \ '''(it operates on all selected mesh objects, and can be used to unwrap selected faces, or all faces)''' bl_idname = "uv.smart_project" bl_label = "Smart UV Project" bl_options = {'REGISTER', 'UNDO'} angle_limit = FloatProperty( name="Angle Limit", description="Lower for more projection groups, higher for less distortion", min=1.0, max=89.0, default=66.0, ) island_margin = FloatProperty( name="Island Margin", description="Margin to reduce bleed from adjacent islands", min=0.0, max=1.0, default=0.0, ) user_area_weight = FloatProperty( name="Area Weight", description="Weight projections vector by faces with larger areas", min=0.0, max=1.0, default=0.0, ) @classmethod def poll(cls, context): return context.active_object is not None def execute(self, context): main(context, self.island_margin, self.angle_limit, self.user_area_weight, ) return {'FINISHED'} def invoke(self, context, event): wm = context.window_manager return wm.invoke_props_dialog(self)