/* * Copyright 2011, Blender Foundation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* * ShaderData, used in four steps: * * Setup from incoming ray, sampled position and background. * Execute for surface, volume or displacement. * Evaluate one or more closures. * Release. * */ #ifdef __OSL__ #include "osl_shader.h" #else #include "svm/bsdf.h" #include "svm/emissive.h" #include "svm/volume.h" #include "svm/svm_bsdf.h" #include "svm/svm.h" #endif CCL_NAMESPACE_BEGIN /* ShaderData setup from incoming ray */ __device_inline void shader_setup_from_ray(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray) { /* fetch triangle data */ int prim = kernel_tex_fetch(__prim_index, isect->prim); float4 Ns = kernel_tex_fetch(__tri_normal, prim); float3 Ng = make_float3(Ns.x, Ns.y, Ns.z); int shader = __float_as_int(Ns.w); /* triangle */ #ifdef __INSTANCING__ sd->object = (isect->object == ~0)? kernel_tex_fetch(__prim_object, isect->prim): isect->object; #endif sd->prim = prim; #ifdef __UV__ sd->u = isect->u; sd->v = isect->v; #endif /* matrices and time */ #ifdef __MOTION__ sd->ob_tfm = object_fetch_transform(kg, sd->object, ray->time, OBJECT_TRANSFORM); sd->ob_itfm = object_fetch_transform(kg, sd->object, ray->time, OBJECT_INVERSE_TRANSFORM); sd->time = ray->time; #endif /* vectors */ sd->P = bvh_triangle_refine(kg, sd, isect, ray); sd->Ng = Ng; sd->N = Ng; sd->I = -ray->D; sd->shader = shader; sd->ray_length = isect->t; /* smooth normal */ if(sd->shader & SHADER_SMOOTH_NORMAL) sd->N = triangle_smooth_normal(kg, sd->prim, sd->u, sd->v); sd->flag = kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*2); sd->flag |= kernel_tex_fetch(__object_flag, sd->object); #ifdef __DPDU__ /* dPdu/dPdv */ triangle_dPdudv(kg, &sd->dPdu, &sd->dPdv, sd->prim); #endif #ifdef __INSTANCING__ if(isect->object != ~0) { /* instance transform */ object_normal_transform(kg, sd, &sd->N); object_normal_transform(kg, sd, &sd->Ng); #ifdef __DPDU__ object_dir_transform(kg, sd, &sd->dPdu); object_dir_transform(kg, sd, &sd->dPdv); #endif } #endif /* backfacing test */ bool backfacing = (dot(sd->Ng, sd->I) < 0.0f); if(backfacing) { sd->flag |= SD_BACKFACING; sd->Ng = -sd->Ng; sd->N = -sd->N; #ifdef __DPDU__ sd->dPdu = -sd->dPdu; sd->dPdv = -sd->dPdv; #endif } #ifdef __RAY_DIFFERENTIALS__ /* differentials */ differential_transfer(&sd->dP, ray->dP, ray->D, ray->dD, sd->Ng, isect->t); differential_incoming(&sd->dI, ray->dD); differential_dudv(&sd->du, &sd->dv, sd->dPdu, sd->dPdv, sd->dP, sd->Ng); #endif } /* ShaderData setup from position sampled on mesh */ __device void shader_setup_from_sample(KernelGlobals *kg, ShaderData *sd, const float3 P, const float3 Ng, const float3 I, int shader, int object, int prim, float u, float v, float t, float time) { /* vectors */ sd->P = P; sd->N = Ng; sd->Ng = Ng; sd->I = I; sd->shader = shader; /* primitive */ #ifdef __INSTANCING__ sd->object = object; #endif sd->prim = prim; #ifdef __UV__ sd->u = u; sd->v = v; #endif sd->ray_length = t; /* detect instancing, for non-instanced the object index is -object-1 */ #ifdef __INSTANCING__ bool instanced = false; if(sd->prim != ~0) { if(sd->object >= 0) instanced = true; else #endif sd->object = ~sd->object; #ifdef __INSTANCING__ } #endif #ifdef __MOTION__ sd->time = time; sd->ob_tfm = object_fetch_transform(kg, sd->object, time, OBJECT_TRANSFORM); sd->ob_itfm = object_fetch_transform(kg, sd->object, time, OBJECT_INVERSE_TRANSFORM); #endif /* smooth normal */ if(sd->shader & SHADER_SMOOTH_NORMAL) { sd->N = triangle_smooth_normal(kg, sd->prim, sd->u, sd->v); #ifdef __INSTANCING__ if(instanced) object_normal_transform(kg, sd, &sd->N); #endif } sd->flag = kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*2); if(sd->object != -1) sd->flag |= kernel_tex_fetch(__object_flag, sd->object); #ifdef __DPDU__ /* dPdu/dPdv */ if(sd->prim == ~0) { sd->dPdu = make_float3(0.0f, 0.0f, 0.0f); sd->dPdv = make_float3(0.0f, 0.0f, 0.0f); } else { triangle_dPdudv(kg, &sd->dPdu, &sd->dPdv, sd->prim); #ifdef __INSTANCING__ if(instanced) { object_dir_transform(kg, sd, &sd->dPdu); object_dir_transform(kg, sd, &sd->dPdv); } #endif } #endif /* backfacing test */ if(sd->prim != ~0) { bool backfacing = (dot(sd->Ng, sd->I) < 0.0f); if(backfacing) { sd->flag |= SD_BACKFACING; sd->Ng = -sd->Ng; sd->N = -sd->N; #ifdef __DPDU__ sd->dPdu = -sd->dPdu; sd->dPdv = -sd->dPdv; #endif } } #ifdef __RAY_DIFFERENTIALS__ /* no ray differentials here yet */ sd->dP.dx = make_float3(0.0f, 0.0f, 0.0f); sd->dP.dy = make_float3(0.0f, 0.0f, 0.0f); sd->dI.dx = make_float3(0.0f, 0.0f, 0.0f); sd->dI.dy = make_float3(0.0f, 0.0f, 0.0f); sd->du.dx = 0.0f; sd->du.dy = 0.0f; sd->dv.dx = 0.0f; sd->dv.dy = 0.0f; #endif } /* ShaderData setup for displacement */ __device void shader_setup_from_displace(KernelGlobals *kg, ShaderData *sd, int object, int prim, float u, float v) { float3 P, Ng, I = make_float3(0.0f, 0.0f, 0.0f); int shader; P = triangle_point_MT(kg, prim, u, v); Ng = triangle_normal_MT(kg, prim, &shader); /* force smooth shading for displacement */ shader |= SHADER_SMOOTH_NORMAL; /* watch out: no instance transform currently */ shader_setup_from_sample(kg, sd, P, Ng, I, shader, object, prim, u, v, 0.0f, TIME_INVALID); } /* ShaderData setup from ray into background */ __device_inline void shader_setup_from_background(KernelGlobals *kg, ShaderData *sd, const Ray *ray) { /* vectors */ sd->P = ray->D; sd->N = -sd->P; sd->Ng = -sd->P; sd->I = -sd->P; sd->shader = kernel_data.background.shader; sd->flag = kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*2); #ifdef __MOTION__ sd->time = ray->time; #endif sd->ray_length = 0.0f; #ifdef __INSTANCING__ sd->object = ~0; #endif sd->prim = ~0; #ifdef __UV__ sd->u = 0.0f; sd->v = 0.0f; #endif #ifdef __DPDU__ /* dPdu/dPdv */ sd->dPdu = make_float3(0.0f, 0.0f, 0.0f); sd->dPdv = make_float3(0.0f, 0.0f, 0.0f); #endif #ifdef __RAY_DIFFERENTIALS__ /* differentials */ sd->dP = ray->dD; differential_incoming(&sd->dI, sd->dP); sd->du.dx = 0.0f; sd->du.dy = 0.0f; sd->dv.dx = 0.0f; sd->dv.dy = 0.0f; #endif } /* BSDF */ #ifdef __MULTI_CLOSURE__ __device_inline void _shader_bsdf_multi_eval(const ShaderData *sd, const float3 omega_in, float *pdf, int skip_bsdf, BsdfEval *bsdf_eval, float sum_pdf, float sum_sample_weight) { for(int i = 0; i< sd->num_closure; i++) { if(i == skip_bsdf) continue; const ShaderClosure *sc = &sd->closure[i]; if(CLOSURE_IS_BSDF(sc->type)) { float bsdf_pdf = 0.0f; #ifdef __OSL__ float3 eval = OSLShader::bsdf_eval(sd, sc, omega_in, bsdf_pdf); #else float3 eval = svm_bsdf_eval(sd, sc, omega_in, &bsdf_pdf); #endif if(bsdf_pdf != 0.0f) { bsdf_eval_accum(bsdf_eval, sc->type, eval*sc->weight); sum_pdf += bsdf_pdf*sc->sample_weight; } sum_sample_weight += sc->sample_weight; } } *pdf = (sum_sample_weight > 0.0f)? sum_pdf/sum_sample_weight: 0.0f; } #endif __device void shader_bsdf_eval(KernelGlobals *kg, const ShaderData *sd, const float3 omega_in, BsdfEval *eval, float *pdf) { #ifdef __MULTI_CLOSURE__ bsdf_eval_init(eval, NBUILTIN_CLOSURES, make_float3(0.0f, 0.0f, 0.0f), kernel_data.film.use_light_pass); return _shader_bsdf_multi_eval(sd, omega_in, pdf, -1, eval, 0.0f, 0.0f); #else const ShaderClosure *sc = &sd->closure; *pdf = 0.0f; *eval = svm_bsdf_eval(sd, sc, omega_in, pdf)*sc->weight; #endif } __device int shader_bsdf_sample(KernelGlobals *kg, const ShaderData *sd, float randu, float randv, BsdfEval *bsdf_eval, float3 *omega_in, differential3 *domega_in, float *pdf) { #ifdef __MULTI_CLOSURE__ int sampled = 0; if(sd->num_closure > 1) { /* pick a BSDF closure based on sample weights */ float sum = 0.0f; for(sampled = 0; sampled < sd->num_closure; sampled++) { const ShaderClosure *sc = &sd->closure[sampled]; if(CLOSURE_IS_BSDF(sc->type)) sum += sc->sample_weight; } float r = sd->randb_closure*sum; sum = 0.0f; for(sampled = 0; sampled < sd->num_closure; sampled++) { const ShaderClosure *sc = &sd->closure[sampled]; if(CLOSURE_IS_BSDF(sc->type)) { sum += sd->closure[sampled].sample_weight; if(r <= sum) break; } } if(sampled == sd->num_closure) { *pdf = 0.0f; return LABEL_NONE; } } const ShaderClosure *sc = &sd->closure[sampled]; int label; float3 eval; *pdf = 0.0f; #ifdef __OSL__ label = OSLShader::bsdf_sample(sd, sc, randu, randv, eval, *omega_in, *domega_in, *pdf); #else label = svm_bsdf_sample(sd, sc, randu, randv, &eval, omega_in, domega_in, pdf); #endif if(*pdf != 0.0f) { bsdf_eval_init(bsdf_eval, sc->type, eval*sc->weight, kernel_data.film.use_light_pass); if(sd->num_closure > 1) { float sweight = sc->sample_weight; _shader_bsdf_multi_eval(sd, *omega_in, pdf, sampled, bsdf_eval, *pdf*sweight, sweight); } } return label; #else /* sample the single closure that we picked */ *pdf = 0.0f; int label = svm_bsdf_sample(sd, &sd->closure, randu, randv, bsdf_eval, omega_in, domega_in, pdf); *bsdf_eval *= sd->closure.weight; return label; #endif } __device void shader_bsdf_blur(KernelGlobals *kg, ShaderData *sd, float roughness) { #ifndef __OSL__ #ifdef __MULTI_CLOSURE__ for(int i = 0; i< sd->num_closure; i++) { ShaderClosure *sc = &sd->closure[i]; if(CLOSURE_IS_BSDF(sc->type)) svm_bsdf_blur(sc, roughness); } #else svm_bsdf_blur(&sd->closure, roughness); #endif #endif } __device float3 shader_bsdf_transparency(KernelGlobals *kg, ShaderData *sd) { #ifdef __MULTI_CLOSURE__ float3 eval = make_float3(0.0f, 0.0f, 0.0f); for(int i = 0; i< sd->num_closure; i++) { ShaderClosure *sc = &sd->closure[i]; if(sc->type == CLOSURE_BSDF_TRANSPARENT_ID) // todo: make this work for osl eval += sc->weight; } return eval; #else if(sd->closure.type == CLOSURE_BSDF_TRANSPARENT_ID) return sd->closure.weight; else return make_float3(0.0f, 0.0f, 0.0f); #endif } __device float3 shader_bsdf_diffuse(KernelGlobals *kg, ShaderData *sd) { #ifdef __MULTI_CLOSURE__ float3 eval = make_float3(0.0f, 0.0f, 0.0f); for(int i = 0; i< sd->num_closure; i++) { ShaderClosure *sc = &sd->closure[i]; if(CLOSURE_IS_BSDF_DIFFUSE(sc->type)) eval += sc->weight; } return eval; #else if(CLOSURE_IS_BSDF_DIFFUSE(sd->closure.type)) return sd->closure.weight; else return make_float3(0.0f, 0.0f, 0.0f); #endif } __device float3 shader_bsdf_glossy(KernelGlobals *kg, ShaderData *sd) { #ifdef __MULTI_CLOSURE__ float3 eval = make_float3(0.0f, 0.0f, 0.0f); for(int i = 0; i< sd->num_closure; i++) { ShaderClosure *sc = &sd->closure[i]; if(CLOSURE_IS_BSDF_GLOSSY(sc->type)) eval += sc->weight; } return eval; #else if(CLOSURE_IS_BSDF_GLOSSY(sd->closure.type)) return sd->closure.weight; else return make_float3(0.0f, 0.0f, 0.0f); #endif } __device float3 shader_bsdf_transmission(KernelGlobals *kg, ShaderData *sd) { #ifdef __MULTI_CLOSURE__ float3 eval = make_float3(0.0f, 0.0f, 0.0f); for(int i = 0; i< sd->num_closure; i++) { ShaderClosure *sc = &sd->closure[i]; if(CLOSURE_IS_BSDF_TRANSMISSION(sc->type)) eval += sc->weight; } return eval; #else if(CLOSURE_IS_BSDF_TRANSMISSION(sd->closure.type)) return sd->closure.weight; else return make_float3(0.0f, 0.0f, 0.0f); #endif } /* Emission */ __device float3 shader_emissive_eval(KernelGlobals *kg, ShaderData *sd) { float3 eval; #ifdef __MULTI_CLOSURE__ eval = make_float3(0.0f, 0.0f, 0.0f); for(int i = 0; i < sd->num_closure; i++) { ShaderClosure *sc = &sd->closure[i]; if(CLOSURE_IS_EMISSION(sc->type)) { #ifdef __OSL__ eval += OSLShader::emissive_eval(sd)*sc->weight; #else eval += svm_emissive_eval(sd, sc)*sc->weight; #endif } } #else eval = svm_emissive_eval(sd, &sd->closure)*sd->closure.weight; #endif return eval; } /* Holdout */ __device float3 shader_holdout_eval(KernelGlobals *kg, ShaderData *sd) { #ifdef __MULTI_CLOSURE__ float3 weight = make_float3(0.0f, 0.0f, 0.0f); for(int i = 0; i < sd->num_closure; i++) { ShaderClosure *sc = &sd->closure[i]; if(CLOSURE_IS_HOLDOUT(sc->type)) weight += sc->weight; } return weight; #else if(sd->closure.type == CLOSURE_HOLDOUT_ID) return make_float3(1.0f, 1.0f, 1.0f); return make_float3(0.0f, 0.0f, 0.0f); #endif } /* Surface Evaluation */ __device void shader_eval_surface(KernelGlobals *kg, ShaderData *sd, float randb, int path_flag) { #ifdef __OSL__ OSLShader::eval_surface(kg, sd, randb, path_flag); #else #ifdef __SVM__ svm_eval_nodes(kg, sd, SHADER_TYPE_SURFACE, randb, path_flag); #else bsdf_diffuse_setup(sd, &sd->closure); sd->closure.weight = make_float3(0.8f, 0.8f, 0.8f); #endif #endif } /* Background Evaluation */ __device float3 shader_eval_background(KernelGlobals *kg, ShaderData *sd, int path_flag) { #ifdef __OSL__ return OSLShader::eval_background(kg, sd, path_flag); #else #ifdef __SVM__ svm_eval_nodes(kg, sd, SHADER_TYPE_SURFACE, 0.0f, path_flag); #ifdef __MULTI_CLOSURE__ float3 eval = make_float3(0.0f, 0.0f, 0.0f); for(int i = 0; i< sd->num_closure; i++) { const ShaderClosure *sc = &sd->closure[i]; if(CLOSURE_IS_BACKGROUND(sc->type)) eval += sc->weight; } return eval; #else if(sd->closure.type == CLOSURE_BACKGROUND_ID) return sd->closure.weight; else return make_float3(0.0f, 0.0f, 0.0f); #endif #else return make_float3(0.8f, 0.8f, 0.8f); #endif #endif } /* Volume */ __device float3 shader_volume_eval_phase(KernelGlobals *kg, ShaderData *sd, float3 omega_in, float3 omega_out) { #ifdef __MULTI_CLOSURE__ float3 eval = make_float3(0.0f, 0.0f, 0.0f); for(int i = 0; i< sd->num_closure; i++) { const ShaderClosure *sc = &sd->closure[i]; if(CLOSURE_IS_VOLUME(sc->type)) { #ifdef __OSL__ eval += OSLShader::volume_eval_phase(sd, omega_in, omega_out); #else eval += volume_eval_phase(sd, sc, omega_in, omega_out); #endif } } return eval; #else return volume_eval_phase(sd, &sd->closure, omega_in, omega_out); #endif } /* Volume Evaluation */ __device void shader_eval_volume(KernelGlobals *kg, ShaderData *sd, float randb, int path_flag) { #ifdef __SVM__ #ifdef __OSL__ OSLShader::eval_volume(kg, sd, randb, path_flag); #else svm_eval_nodes(kg, sd, SHADER_TYPE_VOLUME, randb, path_flag); #endif #endif } /* Displacement Evaluation */ __device void shader_eval_displacement(KernelGlobals *kg, ShaderData *sd) { /* this will modify sd->P */ #ifdef __SVM__ #ifdef __OSL__ OSLShader::eval_displacement(kg, sd); #else svm_eval_nodes(kg, sd, SHADER_TYPE_DISPLACEMENT, 0.0f, 0); #endif #endif } /* Transparent Shadows */ #ifdef __TRANSPARENT_SHADOWS__ __device bool shader_transparent_shadow(KernelGlobals *kg, Intersection *isect) { int prim = kernel_tex_fetch(__prim_index, isect->prim); float4 Ns = kernel_tex_fetch(__tri_normal, prim); int shader = __float_as_int(Ns.w); int flag = kernel_tex_fetch(__shader_flag, (shader & SHADER_MASK)*2); return (flag & SD_HAS_SURFACE_TRANSPARENT) != 0; } #endif __device int shader_pass_id(KernelGlobals *kg, ShaderData *sd) { return kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*2 + 1); } /* Free ShaderData */ __device void shader_release(KernelGlobals *kg, ShaderData *sd) { #ifdef __OSL__ OSLShader::release(kg, sd); #endif } CCL_NAMESPACE_END