#!BPY
""" Registration info for Blender menus:
Name: 'VRML97 (.wrl)...'
Blender: 235
Group: 'Export'
Submenu: 'All Objects...' all
Submenu: 'All Objects compressed...' comp
Submenu: 'Selected Objects...' selected
Tooltip: 'Export to VRML97 file (.wrl)'
"""
__author__ = ("Rick Kimball", "Ken Miller", "Steve Matthews", "Bart")
__url__ = ["blender", "elysiun",
"Author's (Rick) homepage, http://kimballsoftware.com/blender",
"Author's (Bart) homepage, http://www.neeneenee.de/vrml"]
__email__ = ["Bart, bart:neeneenee*de"]
__version__ = "2006/01/17"
__bpydoc__ = """\
This script exports to VRML97 format.
Usage:
Run this script from "File->Export" menu. A pop-up will ask whether you
want to export only selected or all relevant objects.
Known issues:
Doesn't handle multiple materials (don't use material indices);
Doesn't handle multiple UV textures on a single mesh (create a mesh
for each texture);
Can't get the texture array associated with material * not the UV ones;
"""
# $Id$
#
#------------------------------------------------------------------------
# VRML97 exporter for blender 2.36 or above
#
# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
# ***** END GPL LICENCE BLOCK *****
#
####################################
# Library dependancies
####################################
import Blender
from Blender import Object, Mesh, Lamp, Draw, BGL, Image, Text, sys, Mathutils
from Blender.Scene import Render
try:
from os.path import exists, join
pytinst = 1
except:
print "No Python installed, for full features install Python (http://www.python.org/)."
pytinst = 0
import math
####################################
# Global Variables
####################################
scene = Blender.Scene.getCurrent()
world = Blender.World.Get()
worldmat = Blender.Texture.Get()
filename = Blender.Get('filename')
_safeOverwrite = True
extension = ''
ARG=''
class DrawTypes:
"""Object DrawTypes enum values
BOUNDS - draw only the bounding box of the object
WIRE - draw object as a wire frame
SOLID - draw object with flat shading
SHADED - draw object with OpenGL shading
"""
BOUNDBOX = 1
WIRE = 2
SOLID = 3
SHADED = 4
TEXTURE = 5
if not hasattr(Blender.Object,'DrawTypes'):
Blender.Object.DrawTypes = DrawTypes()
##########################################################
# Functions for writing output file
##########################################################
class VRML2Export:
def __init__(self, filename):
#--- public you can change these ---
self.wire = 0
self.proto = 1
self.matonly = 0
self.share = 0
self.billnode = 0
self.halonode = 0
self.collnode = 0
self.tilenode = 0
self.verbose=2 # level of verbosity in console 0-none, 1-some, 2-most
self.cp=3 # decimals for material color values 0.000 - 1.000
self.vp=3 # decimals for vertex coordinate values 0.000 - n.000
self.tp=3 # decimals for texture coordinate values 0.000 - 1.000
self.it=3
#--- class private don't touch ---
self.texNames={} # dictionary of textureNames
self.matNames={} # dictionary of materialNames
self.meshNames={} # dictionary of meshNames
self.indentLevel=0 # keeps track of current indenting
self.filename=filename
self.file = open(filename, "w")
self.bNav=0
self.nodeID=0
self.namesReserved=[ "Anchor", "Appearance", "AudioClip",
"Background","Billboard", "Box",
"Collision", "Color", "ColorInterpolator", "Cone", "Coordinate", "CoordinateInterpolator", "Cylinder", "CylinderSensor",
"DirectionalLight",
"ElevationGrid", "Extrustion",
"Fog", "FontStyle", "Group",
"ImageTexture", "IndexedFaceSet", "IndexedLineSet", "Inline",
"LOD", "Material", "MovieTexture",
"NavigationInfo", "Normal", "NormalInterpolator","OrientationInterpolator",
"PixelTexture", "PlaneSensor", "PointLight", "PointSet", "PositionInterpolator", "ProxmimitySensor",
"ScalarInterpolator", "Script", "Shape", "Sound", "Sphere", "SphereSensor", "SpotLight", "Switch",
"Text", "TextureCoordinate", "TextureTransform", "TimeSensor", "TouchSensor", "Transform",
"Viewpoint", "VisibilitySensor", "WorldInfo" ]
self.namesStandard=[ "Empty","Empty.000","Empty.001","Empty.002","Empty.003","Empty.004","Empty.005",
"Empty.006","Empty.007","Empty.008","Empty.009","Empty.010","Empty.011","Empty.012",
"Scene.001","Scene.002","Scene.003","Scene.004","Scene.005","Scene.06","Scene.013",
"Scene.006","Scene.007","Scene.008","Scene.009","Scene.010","Scene.011","Scene.012",
"World","World.000","World.001","World.002","World.003","World.004","World.005" ]
self.namesFog=[ "","LINEAR","EXPONENTIAL","" ]
##########################################################
# Writing nodes routines
##########################################################
def writeHeader(self):
bfile = sys.expandpath(Blender.Get('filename'))
self.file.write("#VRML V2.0 utf8\n\n")
self.file.write("# This file was authored with Blender (http://www.blender.org/)\n")
self.file.write("# Blender version %s\n" % Blender.Get('version'))
self.file.write("# Blender file %s\n" % sys.basename(bfile))
self.file.write("# Exported using VRML97 exporter v1.55 (2006/01/17)\n\n")
def writeInline(self):
inlines = Blender.Scene.Get()
allinlines = len(inlines)
if scene != inlines[0]:
return
else:
for i in range(allinlines):
nameinline=inlines[i].getName()
if (nameinline not in self.namesStandard) and (i > 0):
self.writeIndented("DEF %s Inline {\n" % (self.cleanStr(nameinline)), 1)
nameinline = nameinline+".wrl"
self.writeIndented("url \"%s\" \n" % nameinline)
self.writeIndented("}\n", -1)
self.writeIndented("\n")
def writeScript(self):
textEditor = Blender.Text.Get()
alltext = len(textEditor)
for i in range(alltext):
nametext = textEditor[i].getName()
nlines = textEditor[i].getNLines()
if (self.proto == 1):
if (nametext == "proto" or nametext == "proto.js" or nametext == "proto.txt") and (nlines != None):
nalllines = len(textEditor[i].asLines())
alllines = textEditor[i].asLines()
for j in range(nalllines):
self.writeIndented(alllines[j] + "\n")
elif (self.proto == 0):
if (nametext == "route" or nametext == "route.js" or nametext == "route.txt") and (nlines != None):
nalllines = len(textEditor[i].asLines())
alllines = textEditor[i].asLines()
for j in range(nalllines):
self.writeIndented(alllines[j] + "\n")
self.writeIndented("\n")
def writeViewpoint(self, thisObj):
context = scene.getRenderingContext()
ratio = float(context.imageSizeY())/float(context.imageSizeX())
lens = (360* (math.atan(ratio *16 / thisObj.data.getLens()) / math.pi))*(math.pi/180)
lens = min(lens, math.pi)
# get the camera location, subtract 90 degress from X to orient like VRML does
loc = self.rotatePointForVRML(thisObj.loc)
rot = [thisObj.RotX - 1.57, thisObj.RotY, thisObj.RotZ]
nRot = self.rotatePointForVRML(rot)
# convert to Quaternion and to Angle Axis
Q = self.eulerToQuaternions(nRot[0], nRot[1], nRot[2])
Q1 = self.multiplyQuaternions(Q[0], Q[1])
Qf = self.multiplyQuaternions(Q1, Q[2])
angleAxis = self.quaternionToAngleAxis(Qf)
self.writeIndented("DEF %s Viewpoint {\n" % (self.cleanStr(thisObj.name)), 1)
self.writeIndented("description \"%s\" \n" % (thisObj.name))
self.writeIndented("position %3.2f %3.2f %3.2f\n" % (loc[0], loc[1], loc[2]))
self.writeIndented("orientation %3.2f %3.2f %3.2f %3.2f\n" % (angleAxis[0], angleAxis[1], -angleAxis[2], angleAxis[3]))
self.writeIndented("fieldOfView %.3f\n" % (lens))
self.writeIndented("}\n", -1)
self.writeIndented("\n")
def writeFog(self):
if len(world) > 0:
mtype = world[0].getMistype()
mparam = world[0].getMist()
grd = world[0].getHor()
grd0, grd1, grd2 = grd[0], grd[1], grd[2]
else:
return
if (mtype == 1 or mtype == 2):
self.writeIndented("Fog {\n",1)
self.writeIndented("fogType \"%s\"\n" % self.namesFog[mtype])
self.writeIndented("color %s %s %s" % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)) + "\n")
self.writeIndented("visibilityRange %s\n" % round(mparam[2],self.cp))
self.writeIndented("}\n",-1)
self.writeIndented("\n")
else:
return
def writeNavigationInfo(self, scene):
allObj = []
allObj = scene.getChildren()
headlight = "TRUE"
vislimit = 0.0
for thisObj in allObj:
objType=thisObj.getType()
if objType == "Camera":
vislimit = thisObj.data.getClipEnd()
elif objType == "Lamp":
headlight = "FALSE"
self.writeIndented("NavigationInfo {\n",1)
self.writeIndented("headlight %s" % headlight + "\n")
self.writeIndented("visibilityLimit %s\n" % (round(vislimit,self.cp)))
self.writeIndented("type [\"EXAMINE\", \"ANY\"]\n")
self.writeIndented("avatarSize [0.25, 1.75, 0.75]\n")
self.writeIndented("} \n",-1)
self.writeIndented(" \n")
def writeSpotLight(self, object, lamp):
if len(world) > 0:
ambi = world[0].getAmb()
ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5
else:
ambi = 0
ambientIntensity = 0
# compute cutoff and beamwidth
intensity=min(lamp.energy/1.75,1.0)
beamWidth=((lamp.spotSize*math.pi)/180.0)*.37;
cutOffAngle=beamWidth*1.3
(dx,dy,dz)=self.computeDirection(object)
# note -dx seems to equal om[3][0]
# note -dz seems to equal om[3][1]
# note dy seems to equal om[3][2]
om = object.getMatrix()
location=self.rotVertex(om, (0,0,0));
radius = lamp.dist*math.cos(beamWidth)
self.writeIndented("DEF %s SpotLight {\n" % self.cleanStr(object.name),1)
self.writeIndented("radius %s\n" % (round(radius,self.cp)))
self.writeIndented("ambientIntensity %s\n" % (round(ambientIntensity,self.cp)))
self.writeIndented("intensity %s\n" % (round(intensity,self.cp)))
self.writeIndented("color %s %s %s\n" % (round(lamp.col[0],self.cp), round(lamp.col[1],self.cp), round(lamp.col[2],self.cp)))
self.writeIndented("beamWidth %s\n" % (round(beamWidth,self.cp)))
self.writeIndented("cutOffAngle %s\n" % (round(cutOffAngle,self.cp)))
self.writeIndented("direction %s %s %s\n" % (round(dx,3),round(dy,3),round(dz,3)))
self.writeIndented("location %s %s %s\n" % (round(location[0],3), round(location[1],3), round(location[2],3)))
self.writeIndented("}\n",-1)
self.writeIndented("\n")
def writeDirectionalLight(self, object, lamp):
if len(world) > 0:
ambi = world[0].getAmb()
ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5
else:
ambi = 0
ambientIntensity = 0
intensity=min(lamp.energy/1.75,1.0)
(dx,dy,dz)=self.computeDirection(object)
self.writeIndented("DEF %s DirectionalLight {\n" % self.cleanStr(object.name),1)
self.writeIndented("ambientIntensity %s\n" % (round(ambientIntensity,self.cp)))
self.writeIndented("color %s %s %s\n" % (round(lamp.col[0],self.cp), round(lamp.col[1],self.cp), round(lamp.col[2],self.cp)))
self.writeIndented("intensity %s\n" % (round(intensity,self.cp)))
self.writeIndented("direction %s %s %s\n" % (round(dx,4),round(dy,4),round(dz,4)))
self.writeIndented("}\n",-1)
self.writeIndented("\n")
def writePointLight(self, object, lamp):
if len(world) > 0:
ambi = world[0].getAmb()
ambientIntensity = ((float(ambi[0] + ambi[1] + ambi[2]))/3)/2.5
else:
ambi = 0
ambientIntensity = 0
om = object.getMatrix()
location=self.rotVertex(om, (0,0,0));
intensity=min(lamp.energy/1.75,1.0)
radius = lamp.dist
self.writeIndented("DEF %s PointLight {\n" % self.cleanStr(object.name),1)
self.writeIndented("ambientIntensity %s\n" % (round(ambientIntensity,self.cp)))
self.writeIndented("color %s %s %s\n" % (round(lamp.col[0],self.cp), round(lamp.col[1],self.cp), round(lamp.col[2],self.cp)))
self.writeIndented("intensity %s\n" % (round(intensity,self.cp)))
self.writeIndented("location %s %s %s\n" % (round(location[0],3), round(location[1],3), round(location[2],3)))
self.writeIndented("radius %s\n" % radius )
self.writeIndented("}\n",-1)
self.writeIndented("\n")
def writeNode(self, thisObj):
objectname=str(thisObj.getName())
if objectname in self.namesStandard:
return
else:
(dx,dy,dz)=self.computeDirection(thisObj)
om = thisObj.getMatrix()
location=self.rotVertex(om, (0,0,0));
self.writeIndented("%s {\n" % objectname,1)
self.writeIndented("# direction %s %s %s\n" % (round(dx,3),round(dy,3),round(dz,3)))
self.writeIndented("# location %s %s %s\n" % (round(location[0],3), round(location[1],3), round(location[2],3)))
self.writeIndented("}\n",-1)
self.writeIndented("\n")
def secureName(self, name):
name = name + str(self.nodeID)
self.nodeID += 1
if len(name) <= 3:
newname = "_" + str(self.nodeID)
return "%s" % (newname)
else:
for bad in ['"','#',"'",',','.','[','\\',']','{','}']:
name=name.replace(bad,'_')
if name in self.namesReserved:
newname = name[0:3] + "_" + str(self.nodeID)
return "%s" % (newname)
elif name[0].isdigit():
newname = "_" + name + str(self.nodeID)
return "%s" % (newname)
else:
newname = name
return "%s" % (newname)
def writeIndexedFaceSet(self, object, normals = 0):
imageMap={} # set of used images
sided={} # 'one':cnt , 'two':cnt
vColors={} # 'multi':1
meshName = self.cleanStr(object.name)
mesh=object.getData()
meshME = self.cleanStr(mesh.name)
if len(mesh.faces) == 0:
return
for face in mesh.faces:
if (face.mode & Mesh.FaceModes['HALO']) and self.halonode == 0:
self.writeIndented("Billboard {\n",1)
self.writeIndented("axisOfRotation 0 0 0\n")
self.writeIndented("children [\n")
self.halonode = 1
elif (face.mode & Mesh.FaceModes['BILLBOARD']) and self.billnode == 0:
self.writeIndented("Billboard {\n",1)
self.writeIndented("axisOfRotation 0 1 0\n")
self.writeIndented("children [\n")
self.billnode = 1
elif (face.mode & Mesh.FaceModes['OBCOL']) and self.matonly == 0:
self.matonly = 1
elif (face.mode & Mesh.FaceModes['SHAREDCOL']) and self.share == 0:
self.share = 1
elif (face.mode & Mesh.FaceModes['TILES']) and self.tilenode == 0:
self.tilenode = 1
elif not (face.mode & Mesh.FaceModes['DYNAMIC']) and self.collnode == 0:
self.writeIndented("Collision {\n",1)
self.writeIndented("collide FALSE\n")
self.writeIndented("children [\n")
self.collnode = 1
nIFSCnt=self.countIFSSetsNeeded(mesh, imageMap, sided, vColors)
if nIFSCnt > 1:
self.writeIndented("DEF %s%s Group {\n" % ("G_", meshName),1)
self.writeIndented("children [\n",1)
if sided.has_key('two') and sided['two'] > 0:
bTwoSided=1
else:
bTwoSided=0
om = object.getMatrix();
location=self.rotVertex(om, (0,0,0));
self.writeIndented("DEF %s Transform {\n" % meshName,1)
self.writeIndented("translation %s %s %s\n" % (round(location[0],3), round(location[1],3), round(location[2],3)),1)
self.writeIndented("children [\n")
self.writeIndented("Shape {\n",1)
maters=mesh.materials
hasImageTexture=0
issmooth=0
if len(maters) > 0 or mesh.hasFaceUV():
self.writeIndented("appearance Appearance {\n", 1)
# right now this script can only handle a single material per mesh.
if len(maters) >= 1:
mat=Blender.Material.Get(maters[0].name)
matFlags = mat.getMode()
if not matFlags & Blender.Material.Modes['TEXFACE']:
self.writeMaterial(mat, self.cleanStr(maters[0].name,''))
if len(maters) > 1:
print "Warning: mesh named %s has multiple materials" % meshName
print "Warning: only one material per object handled"
#-- textures
if mesh.hasFaceUV():
for face in mesh.faces:
if (hasImageTexture == 0) and (face.image):
self.writeImageTexture(face.image.name, face.image.filename)
hasImageTexture=1 # keep track of face texture
if self.tilenode == 1:
self.writeIndented("textureTransform TextureTransform { scale %s %s }\n" % (face.image.xrep, face.image.yrep))
self.tilenode = 0
self.writeIndented("}\n", -1)
#-- IndexedFaceSet or IndexedLineSet
# check if object is wireframe only
if object.drawType == Blender.Object.DrawTypes.WIRE:
# user selected WIRE=2 on the Drawtype=Wire on (F9) Edit page
ifStyle="IndexedLineSet"
self.wire = 1
else:
# user selected BOUNDS=1, SOLID=3, SHARED=4, or TEXTURE=5
ifStyle="IndexedFaceSet"
# look up mesh name, use it if available
if self.meshNames.has_key(meshME):
self.writeIndented("geometry USE ME_%s\n" % meshME)
self.meshNames[meshME]+=1
else:
if int(mesh.users) > 1:
self.writeIndented("geometry DEF ME_%s %s {\n" % (meshME, ifStyle), 1)
self.meshNames[meshME]=1
else:
self.writeIndented("geometry %s {\n" % ifStyle, 1)
if object.drawType != Blender.Object.DrawTypes.WIRE:
if bTwoSided == 1:
self.writeIndented("solid FALSE\n")
else:
self.writeIndented("solid TRUE\n")
#--- output coordinates
self.writeCoordinates(object, mesh, meshName)
if object.drawType != Blender.Object.DrawTypes.WIRE:
#--- output textureCoordinates if UV texture used
if mesh.hasFaceUV():
if hasImageTexture == 1:
self.writeTextureCoordinates(mesh)
elif self.matonly == 1 and self.share == 1:
self.writeFaceColors(mesh)
for face in mesh.faces:
if face.smooth:
issmooth=1
if issmooth==1 and self.wire == 0:
creaseAngle=(mesh.getMaxSmoothAngle())*(math.pi/180.0)
self.writeIndented("creaseAngle %s\n" % (round(creaseAngle,self.cp)))
#--- output vertexColors
if self.share == 1 and self.matonly == 0:
self.writeVertexColors(mesh)
#--- output closing braces
self.writeIndented("}\n", -1)
self.writeIndented("}\n", -1)
self.writeIndented("]\n", -1)
self.matonly = 0
self.share = 0
self.wire = 0
self.writeIndented("}\n", -1)
if self.halonode == 1:
self.writeIndented("]\n", -1)
self.writeIndented("}\n", -1)
self.halonode = 0
if self.billnode == 1:
self.writeIndented("]\n", -1)
self.writeIndented("}\n", -1)
self.billnode = 0
if self.collnode == 1:
self.writeIndented("]\n", -1)
self.writeIndented("}\n", -1)
self.collnode = 0
if nIFSCnt > 1:
self.writeIndented("]\n", -1)
self.writeIndented("}\n", -1)
self.writeIndented("\n")
def writeCoordinates(self, object, mesh, meshName):
#-- vertices
self.writeIndented("coord DEF %s%s Coordinate {\n" % ("coord_",meshName), 1)
self.writeIndented("point [\n\t\t\t\t\t\t", 1)
meshVertexList = mesh.verts
# create vertex list and pre rotate -90 degrees X for VRML
mm=object.getMatrix()
location=self.rotVertex(mm, (0,0,0));
for vertex in meshVertexList:
v=self.rotVertex(mm, vertex);
self.file.write("%s %s %s, " % (round((v[0]-location[0]),self.vp), round((v[1]-location[1]),self.vp), round((v[2]-location[2]),self.vp) ))
self.writeIndented("\n", 0)
self.writeIndented("]\n", -1)
self.writeIndented("}\n", -1)
self.writeIndented("coordIndex [\n\t\t\t\t\t", 1)
coordIndexList=[]
for face in mesh.faces:
cordStr=""
for i in range(len(face)):
indx=meshVertexList.index(face[i])
cordStr = cordStr + "%s " % indx
self.file.write(cordStr + "-1, ")
self.writeIndented("\n", 0)
self.writeIndented("]\n", -1)
def writeTextureCoordinates(self, mesh):
texCoordList=[]
texIndexList=[]
j=0
for face in mesh.faces:
for i in range(len(face)):
texIndexList.append(j)
texCoordList.append(face.uv[i])
j=j+1
texIndexList.append(-1)
self.writeIndented("texCoord TextureCoordinate {\n", 1)
self.writeIndented("point [\n\t\t\t\t\t\t", 1)
for i in range(len(texCoordList)):
self.file.write("%s %s, " % (round(texCoordList[i][0],self.tp), round(texCoordList[i][1],self.tp)))
self.writeIndented("\n", 0)
self.writeIndented("]\n", -1)
self.writeIndented("}\n", -1)
self.writeIndented("texCoordIndex [\n\t\t\t\t\t\t", 1)
texIndxStr=""
for i in range(len(texIndexList)):
texIndxStr = texIndxStr + "%d, " % texIndexList[i]
if texIndexList[i]==-1:
self.file.write(texIndxStr)
texIndxStr=""
self.writeIndented("\n", 0)
self.writeIndented("]\n", -1)
def writeFaceColors(self, mesh):
self.writeIndented("colorPerVertex FALSE\n")
self.writeIndented("color Color {\n",1)
self.writeIndented("color [\n\t\t\t\t\t\t", 1)
for face in mesh.faces:
if face.col:
c=face.col[0]
if self.verbose > 2:
print "Debug: face.col r=%d g=%d b=%d" % (c.r, c.g, c.b)
aColor = self.rgbToFS(c)
self.file.write("%s, " % aColor)
self.writeIndented("\n", 0)
self.writeIndented("]\n",-1)
self.writeIndented("}\n",-1)
def writeVertexColors(self, mesh):
self.writeIndented("colorPerVertex TRUE\n")
self.writeIndented("color Color {\n",1)
self.writeIndented("color [\n\t\t\t\t\t\t", 1)
cols = [None] * len(mesh.verts)
for face in mesh.faces:
for vind in range(len(face.v)):
vertex = face.v[vind]
i = vertex.index
if cols[i] == None:
cols[i] = face.col[vind]
for i in range(len(mesh.verts)):
aColor = self.rgbToFS(cols[i])
self.file.write("%s, " % aColor)
self.writeIndented("\n", 0)
self.writeIndented("]\n",-1)
self.writeIndented("}\n",-1)
def writeMaterial(self, mat, matName):
# look up material name, use it if available
if self.matNames.has_key(matName):
self.writeIndented("material USE MA_%s\n" % matName)
self.matNames[matName]+=1
return;
self.matNames[matName]=1
ambient = mat.amb/3
diffuseR, diffuseG, diffuseB = mat.rgbCol[0], mat.rgbCol[1],mat.rgbCol[2]
if len(world) > 0:
ambi = world[0].getAmb()
ambi0, ambi1, ambi2 = (ambi[0]*mat.amb)*2, (ambi[1]*mat.amb)*2, (ambi[2]*mat.amb)*2
else:
ambi0, ambi1, ambi2 = 0, 0, 0
emisR, emisG, emisB = (diffuseR*mat.emit+ambi0)/2, (diffuseG*mat.emit+ambi1)/2, (diffuseB*mat.emit+ambi2)/2
shininess = mat.hard/512.0
specR = (mat.specCol[0]+0.001)/(1.25/(mat.getSpec()+0.001))
specG = (mat.specCol[1]+0.001)/(1.25/(mat.getSpec()+0.001))
specB = (mat.specCol[2]+0.001)/(1.25/(mat.getSpec()+0.001))
transp = 1-mat.alpha
matFlags = mat.getMode()
if matFlags & Blender.Material.Modes['SHADELESS']:
ambient = 1
shine = 1
specR = emitR = diffuseR
specG = emitG = diffuseG
specB = emitB = diffuseB
self.writeIndented("material DEF MA_%s Material {\n" % matName, 1)
self.writeIndented("diffuseColor %s %s %s\n" % (round(diffuseR,self.cp), round(diffuseG,self.cp), round(diffuseB,self.cp)))
self.writeIndented("ambientIntensity %s\n" % (round(ambient,self.cp)))
self.writeIndented("specularColor %s %s %s\n" % (round(specR,self.cp), round(specG,self.cp), round(specB,self.cp)))
self.writeIndented("emissiveColor %s %s %s\n" % (round(emisR,self.cp), round(emisG,self.cp), round(emisB,self.cp)))
self.writeIndented("shininess %s\n" % (round(shininess,self.cp)))
self.writeIndented("transparency %s\n" % (round(transp,self.cp)))
self.writeIndented("}\n",-1)
def writeImageTexture(self, name, filename):
if self.texNames.has_key(name):
self.writeIndented("texture USE %s\n" % self.cleanStr(name))
self.texNames[name] += 1
return
else:
self.writeIndented("texture DEF %s ImageTexture {\n" % self.cleanStr(name), 1)
self.writeIndented("url \"%s\"\n" % name.split("\\")[-1].split("/")[-1])
self.writeIndented("}\n",-1)
self.texNames[name] = 1
def writeBackground(self):
if len(world) > 0:
worldname = world[0].getName()
else:
return
blending = world[0].getSkytype()
grd = world[0].getHor()
grd0, grd1, grd2 = grd[0], grd[1], grd[2]
sky = world[0].getZen()
sky0, sky1, sky2 = sky[0], sky[1], sky[2]
mix0, mix1, mix2 = grd[0]+sky[0], grd[1]+sky[1], grd[2]+sky[2]
mix0, mix1, mix2 = mix0/2, mix1/2, mix2/2
if worldname in self.namesStandard:
self.writeIndented("Background {\n",1)
else:
self.writeIndented("DEF %s Background {\n" % self.secureName(worldname),1)
# No Skytype - just Hor color
if blending == 0:
self.writeIndented("groundColor %s %s %s\n" % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
self.writeIndented("skyColor %s %s %s\n" % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
# Blend Gradient
elif blending == 1:
self.writeIndented("groundColor [ %s %s %s, " % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
self.writeIndented("%s %s %s ]\n" %(round(mix0,self.cp), round(mix1,self.cp), round(mix2,self.cp)))
self.writeIndented("groundAngle [ 1.57, 1.57 ]\n")
self.writeIndented("skyColor [ %s %s %s, " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
self.writeIndented("%s %s %s ]\n" %(round(mix0,self.cp), round(mix1,self.cp), round(mix2,self.cp)))
self.writeIndented("skyAngle [ 1.57, 1.57 ]\n")
# Blend+Real Gradient Inverse
elif blending == 3:
self.writeIndented("groundColor [ %s %s %s, " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
self.writeIndented("%s %s %s ]\n" %(round(mix0,self.cp), round(mix1,self.cp), round(mix2,self.cp)))
self.writeIndented("groundAngle [ 1.57, 1.57 ]\n")
self.writeIndented("skyColor [ %s %s %s, " % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
self.writeIndented("%s %s %s ]\n" %(round(mix0,self.cp), round(mix1,self.cp), round(mix2,self.cp)))
self.writeIndented("skyAngle [ 1.57, 1.57 ]\n")
# Paper - just Zen Color
elif blending == 4:
self.writeIndented("groundColor %s %s %s\n" % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
self.writeIndented("skyColor %s %s %s\n" % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
# Blend+Real+Paper - komplex gradient
elif blending == 7:
self.writeIndented("groundColor [ %s %s %s, " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
self.writeIndented("%s %s %s ]\n" %(round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
self.writeIndented("groundAngle [ 1.57, 1.57 ]\n")
self.writeIndented("skyColor [ %s %s %s, " % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
self.writeIndented("%s %s %s ]\n" %(round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
self.writeIndented("skyAngle [ 1.57, 1.57 ]\n")
# Any Other two colors
else:
self.writeIndented("groundColor %s %s %s\n" % (round(grd0,self.cp), round(grd1,self.cp), round(grd2,self.cp)))
self.writeIndented("skyColor %s %s %s\n" % (round(sky0,self.cp), round(sky1,self.cp), round(sky2,self.cp)))
alltexture = len(worldmat)
for i in range(alltexture):
namemat = worldmat[i].getName()
pic = worldmat[i].getImage()
if (namemat == "back") and (pic != None):
self.writeIndented("backUrl \"%s\"\n" % str(pic.getName()))
elif (namemat == "bottom") and (pic != None):
self.writeIndented("bottomUrl \"%s\"\n" % str(pic.getName()))
elif (namemat == "front") and (pic != None):
self.writeIndented("frontUrl \"%s\"\n" % str(pic.getName()))
elif (namemat == "left") and (pic != None):
self.writeIndented("leftUrl \"%s\"\n" % str(pic.getName()))
elif (namemat == "right") and (pic != None):
self.writeIndented("rightUrl \"%s\"\n" % str(pic.getName()))
elif (namemat == "top") and (pic != None):
self.writeIndented("topUrl \"%s\"\n" % str(pic.getName()))
self.writeIndented("}",-1)
self.writeIndented("\n\n")
##########################################################
# export routine
##########################################################
def export(self, scene, world, worldmat):
print "Info: starting VRML97 export to " + self.filename + "..."
self.writeHeader()
self.writeScript()
self.writeNavigationInfo(scene)
self.writeBackground()
self.writeFog()
self.proto = 0
allObj = []
if ARG == 'selected':
allObj = Blender.Object.GetSelected()
else:
allObj = scene.getChildren()
self.writeInline()
for thisObj in allObj:
try:
objType=thisObj.getType()
objName=thisObj.getName()
self.matonly = 0
if objType == "Camera":
self.writeViewpoint(thisObj)
elif objType == "Mesh":
self.writeIndexedFaceSet(thisObj, normals = 0)
elif objType == "Lamp":
lmpName=Lamp.Get(thisObj.data.getName())
lmpType=lmpName.getType()
if lmpType == Lamp.Types.Lamp:
self.writePointLight(thisObj, lmpName)
elif lmpType == Lamp.Types.Spot:
self.writeSpotLight(thisObj, lmpName)
elif lmpType == Lamp.Types.Sun:
self.writeDirectionalLight(thisObj, lmpName)
else:
self.writeDirectionalLight(thisObj, lmpName)
elif objType == "Empty" and objName != "Empty":
self.writeNode(thisObj)
else:
#print "Info: Ignoring [%s], object type [%s] not handle yet" % (object.name,object.getType())
print ""
except AttributeError:
print "Error: Unable to get type info for %s" % thisObj.getName()
if ARG != 'selected':
self.writeScript()
self.cleanup()
##########################################################
# Utility methods
##########################################################
def cleanup(self):
self.file.close()
self.texNames={}
self.matNames={}
self.indentLevel=0
print "Info: finished VRML97 export to %s\n" % self.filename
def cleanStr(self, name, prefix='rsvd_'):
"""cleanStr(name,prefix) - try to create a valid VRML DEF name from object name"""
newName=name[:]
if len(newName) == 0:
self.nNodeID+=1
return "%s%d" % (prefix, self.nNodeID)
if newName in self.namesReserved:
newName='%s%s' % (prefix,newName)
if newName[0].isdigit():
newName='%s%s' % ('_',newName)
for bad in [' ','"','#',"'",',','.','[','\\',']','{','}']:
newName=newName.replace(bad,'_')
return newName
def countIFSSetsNeeded(self, mesh, imageMap, sided, vColors):
"""
countIFFSetsNeeded() - should look at a blender mesh to determine
how many VRML IndexFaceSets or IndexLineSets are needed. A
new mesh created under the following conditions:
o - split by UV Textures / one per mesh
o - split by face, one sided and two sided
o - split by smooth and flat faces
o - split when faces only have 2 vertices * needs to be an IndexLineSet
"""
imageNameMap={}
faceMap={}
nFaceIndx=0
for face in mesh.faces:
sidename='';
if (face.mode & Mesh.FaceModes['TWOSIDE']):
sidename='two'
else:
sidename='one'
if not vColors.has_key('multi'):
for face in mesh.faces:
if face.col:
c=face.col[0]
if c.r != 255 and c.g != 255 and c.b !=255:
vColors['multi']=1
if sided.has_key(sidename):
sided[sidename]+=1
else:
sided[sidename]=1
if face.image:
faceName="%s_%s" % (face.image.name, sidename);
if imageMap.has_key(faceName):
imageMap[faceName].append(face)
else:
imageMap[faceName]=[face.image.name,sidename,face]
if self.verbose > 2:
for faceName in imageMap.keys():
ifs=imageMap[faceName]
print "Debug: faceName=%s image=%s, solid=%s facecnt=%d" % \
(faceName, ifs[0], ifs[1], len(ifs)-2)
return len(imageMap.keys())
def faceToString(self,face):
print "Debug: face.flag=0x%x (bitflags)" % face.flag
if (face.flag & Mesh.FaceFlags['SELECT']):
print "Debug: face.flag.SELECT=true"
print "Debug: face.mode=0x%x (bitflags)" % face.mode
if (face.mode & Mesh.FaceModes['TWOSIDE']):
print "Debug: face.mode twosided"
print "Debug: face.transp=0x%x (enum)" % face.transp
if (face.transp & Mesh.FaceTranspModes['SOLID']):
print "Debug: face.transp.SOLID"
if face.image:
print "Debug: face.image=%s" % face.image.name
print "Debug: face.materialIndex=%d" % face.materialIndex
def meshToString(self,mesh):
print "Debug: mesh.hasVertexUV=%d" % mesh.hasVertexUV()
print "Debug: mesh.hasFaceUV=%d" % mesh.hasFaceUV()
print "Debug: mesh.hasVertexColours=%d" % mesh.hasVertexColours()
print "Debug: mesh.verts=%d" % len(mesh.verts)
print "Debug: mesh.faces=%d" % len(mesh.faces)
print "Debug: mesh.materials=%d" % len(mesh.materials)
def rgbToFS(self, c):
s="%s %s %s" % (round(c.r/255.0,self.cp), round(c.g/255.0,self.cp), round(c.b/255.0,self.cp))
return s
def computeDirection(self, object):
x,y,z=(0,-1.0,0) # point down
ax,ay,az = (object.RotX,object.RotZ,object.RotY)
# rot X
x1=x
y1=y*math.cos(ax)-z*math.sin(ax)
z1=y*math.sin(ax)+z*math.cos(ax)
# rot Y
x2=x1*math.cos(ay)+z1*math.sin(ay)
y2=y1
z2=z1*math.cos(ay)-x1*math.sin(ay)
# rot Z
x3=x2*math.cos(az)-y2*math.sin(az)
y3=x2*math.sin(az)+y2*math.cos(az)
z3=z2
return [x3,y3,z3]
# swap Y and Z to handle axis difference between Blender and VRML
#------------------------------------------------------------------------
def rotatePointForVRML(self, v):
x = v[0]
y = v[2]
z = -v[1]
vrmlPoint=[x, y, z]
return vrmlPoint
def rotVertex(self, mm, v):
lx,ly,lz=v[0],v[1],v[2]
gx=(mm[0][0]*lx + mm[1][0]*ly + mm[2][0]*lz) + mm[3][0]
gy=((mm[0][2]*lx + mm[1][2]*ly+ mm[2][2]*lz) + mm[3][2])
gz=-((mm[0][1]*lx + mm[1][1]*ly + mm[2][1]*lz) + mm[3][1])
rotatedv=[gx,gy,gz]
return rotatedv
# For writing well formed VRML code
#------------------------------------------------------------------------
def writeIndented(self, s, inc=0):
if inc < 1:
self.indentLevel = self.indentLevel + inc
self.file.write( self.indentLevel*"\t" + s)
if inc > 0:
self.indentLevel = self.indentLevel + inc
# Converts a Euler to three new Quaternions
# Angles of Euler are passed in as radians
#------------------------------------------------------------------------
def eulerToQuaternions(self, x, y, z):
Qx = [math.cos(x/2), math.sin(x/2), 0, 0]
Qy = [math.cos(y/2), 0, math.sin(y/2), 0]
Qz = [math.cos(z/2), 0, 0, math.sin(z/2)]
quaternionVec=[Qx,Qy,Qz]
return quaternionVec
# Multiply two Quaternions together to get a new Quaternion
#------------------------------------------------------------------------
def multiplyQuaternions(self, Q1, Q2):
result = [((Q1[0] * Q2[0]) - (Q1[1] * Q2[1]) - (Q1[2] * Q2[2]) - (Q1[3] * Q2[3])),
((Q1[0] * Q2[1]) + (Q1[1] * Q2[0]) + (Q1[2] * Q2[3]) - (Q1[3] * Q2[2])),
((Q1[0] * Q2[2]) + (Q1[2] * Q2[0]) + (Q1[3] * Q2[1]) - (Q1[1] * Q2[3])),
((Q1[0] * Q2[3]) + (Q1[3] * Q2[0]) + (Q1[1] * Q2[2]) - (Q1[2] * Q2[1]))]
return result
# Convert a Quaternion to an Angle Axis (ax, ay, az, angle)
# angle is in radians
#------------------------------------------------------------------------
def quaternionToAngleAxis(self, Qf):
scale = math.pow(Qf[1],2) + math.pow(Qf[2],2) + math.pow(Qf[3],2)
ax = Qf[1]
ay = Qf[2]
az = Qf[3]
if scale > .0001:
ax/=scale
ay/=scale
az/=scale
angle = 2 * math.acos(Qf[0])
result = [ax, ay, az, angle]
return result
##########################################################
# Callbacks, needed before Main
##########################################################
def select_file(filename):
if pytinst == 1:
if exists(filename) and _safeOverwrite:
result = \
Draw.PupMenu("File Already Exists, Overwrite?%t|Yes%x1|No%x0")
if(result != 1):
return
if not filename.endswith(extension):
filename += extension
wrlexport=VRML2Export(filename)
wrlexport.export(scene, world, worldmat)
def createWRLPath():
filename = Blender.Get('filename')
print filename
if filename.find('.') != -1:
filename = filename.split('.')[0]
filename += extension
print filename
return filename
#########################################################
# main routine
#########################################################
try:
ARG = __script__['arg'] # user selected argument
except:
print "older version"
if Blender.Get('version') < 235:
print "Warning: VRML97 export failed, wrong blender version!"
print " You aren't running blender version 2.35 or greater"
print " download a newer version from http://blender3d.org/"
else:
if ARG == 'comp':
extension=".wrz"
from gzip import *
else:
extension=".wrl"
Blender.Window.FileSelector(select_file,"Export VRML97",createWRLPath())