/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* Object Primitive * * All mesh and curve primitives are part of an object. The same mesh and curves * may be instanced multiple times by different objects. * * If the mesh is not instanced multiple times, the object will not be explicitly * stored as a primitive in the BVH, rather the bare triangles are curved are * directly primitives in the BVH with world space locations applied, and the object * ID is looked up afterwards. */ CCL_NAMESPACE_BEGIN /* Object attributes, for now a fixed size and contents */ enum ObjectTransform { OBJECT_TRANSFORM = 0, OBJECT_TRANSFORM_MOTION_PRE = 0, OBJECT_INVERSE_TRANSFORM = 4, OBJECT_TRANSFORM_MOTION_POST = 4, OBJECT_PROPERTIES = 8, OBJECT_DUPLI = 9 }; enum ObjectVectorTransform { OBJECT_VECTOR_MOTION_PRE = 0, OBJECT_VECTOR_MOTION_POST = 3 }; /* Object to world space transformation */ ccl_device_inline Transform object_fetch_transform(KernelGlobals *kg, int object, enum ObjectTransform type) { int offset = object*OBJECT_SIZE + (int)type; Transform tfm; tfm.x = kernel_tex_fetch(__objects, offset + 0); tfm.y = kernel_tex_fetch(__objects, offset + 1); tfm.z = kernel_tex_fetch(__objects, offset + 2); tfm.w = make_float4(0.0f, 0.0f, 0.0f, 1.0f); return tfm; } /* Object to world space transformation for motion vectors */ ccl_device_inline Transform object_fetch_vector_transform(KernelGlobals *kg, int object, enum ObjectVectorTransform type) { int offset = object*OBJECT_VECTOR_SIZE + (int)type; Transform tfm; tfm.x = kernel_tex_fetch(__objects_vector, offset + 0); tfm.y = kernel_tex_fetch(__objects_vector, offset + 1); tfm.z = kernel_tex_fetch(__objects_vector, offset + 2); tfm.w = make_float4(0.0f, 0.0f, 0.0f, 1.0f); return tfm; } /* Motion blurred object transformations */ #ifdef __OBJECT_MOTION__ ccl_device_inline Transform object_fetch_transform_motion(KernelGlobals *kg, int object, float time) { DecompMotionTransform motion; int offset = object*OBJECT_SIZE + (int)OBJECT_TRANSFORM_MOTION_PRE; motion.mid.x = kernel_tex_fetch(__objects, offset + 0); motion.mid.y = kernel_tex_fetch(__objects, offset + 1); motion.mid.z = kernel_tex_fetch(__objects, offset + 2); motion.mid.w = kernel_tex_fetch(__objects, offset + 3); motion.pre_x = kernel_tex_fetch(__objects, offset + 4); motion.pre_y = kernel_tex_fetch(__objects, offset + 5); motion.post_x = kernel_tex_fetch(__objects, offset + 6); motion.post_y = kernel_tex_fetch(__objects, offset + 7); Transform tfm; transform_motion_interpolate(&tfm, &motion, time); return tfm; } ccl_device_inline Transform object_fetch_transform_motion_test(KernelGlobals *kg, int object, float time, Transform *itfm) { int object_flag = kernel_tex_fetch(__object_flag, object); if(object_flag & SD_OBJECT_MOTION) { /* if we do motion blur */ Transform tfm = object_fetch_transform_motion(kg, object, time); if(itfm) *itfm = transform_quick_inverse(tfm); return tfm; } else { Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM); if(itfm) *itfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM); return tfm; } } #endif /* Transform position from object to world space */ ccl_device_inline void object_position_transform(KernelGlobals *kg, const ShaderData *sd, float3 *P) { #ifdef __OBJECT_MOTION__ *P = transform_point(&sd->ob_tfm, *P); #else Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM); *P = transform_point(&tfm, *P); #endif } /* Transform position from world to object space */ ccl_device_inline void object_inverse_position_transform(KernelGlobals *kg, const ShaderData *sd, float3 *P) { #ifdef __OBJECT_MOTION__ *P = transform_point(&sd->ob_itfm, *P); #else Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM); *P = transform_point(&tfm, *P); #endif } /* Transform normal from world to object space */ ccl_device_inline void object_inverse_normal_transform(KernelGlobals *kg, const ShaderData *sd, float3 *N) { #ifdef __OBJECT_MOTION__ *N = normalize(transform_direction_transposed(&sd->ob_tfm, *N)); #else Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM); *N = normalize(transform_direction_transposed(&tfm, *N)); #endif } /* Transform normal from object to world space */ ccl_device_inline void object_normal_transform(KernelGlobals *kg, const ShaderData *sd, float3 *N) { #ifdef __OBJECT_MOTION__ *N = normalize(transform_direction_transposed(&sd->ob_itfm, *N)); #else Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM); *N = normalize(transform_direction_transposed(&tfm, *N)); #endif } /* Transform direction vector from object to world space */ ccl_device_inline void object_dir_transform(KernelGlobals *kg, const ShaderData *sd, float3 *D) { #ifdef __OBJECT_MOTION__ *D = transform_direction(&sd->ob_tfm, *D); #else Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM); *D = transform_direction(&tfm, *D); #endif } /* Transform direction vector from world to object space */ ccl_device_inline void object_inverse_dir_transform(KernelGlobals *kg, const ShaderData *sd, float3 *D) { #ifdef __OBJECT_MOTION__ *D = transform_direction(&sd->ob_itfm, *D); #else Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM); *D = transform_direction(&tfm, *D); #endif } /* Object center position */ ccl_device_inline float3 object_location(KernelGlobals *kg, const ShaderData *sd) { if(sd->object == OBJECT_NONE) return make_float3(0.0f, 0.0f, 0.0f); #ifdef __OBJECT_MOTION__ return make_float3(sd->ob_tfm.x.w, sd->ob_tfm.y.w, sd->ob_tfm.z.w); #else Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM); return make_float3(tfm.x.w, tfm.y.w, tfm.z.w); #endif } /* Total surface area of object */ ccl_device_inline float object_surface_area(KernelGlobals *kg, int object) { int offset = object*OBJECT_SIZE + OBJECT_PROPERTIES; float4 f = kernel_tex_fetch(__objects, offset); return f.x; } /* Pass ID number of object */ ccl_device_inline float object_pass_id(KernelGlobals *kg, int object) { if(object == OBJECT_NONE) return 0.0f; int offset = object*OBJECT_SIZE + OBJECT_PROPERTIES; float4 f = kernel_tex_fetch(__objects, offset); return f.y; } /* Per object random number for shader variation */ ccl_device_inline float object_random_number(KernelGlobals *kg, int object) { if(object == OBJECT_NONE) return 0.0f; int offset = object*OBJECT_SIZE + OBJECT_PROPERTIES; float4 f = kernel_tex_fetch(__objects, offset); return f.z; } /* Particle ID from which this object was generated */ ccl_device_inline uint object_particle_id(KernelGlobals *kg, int object) { if(object == OBJECT_NONE) return 0.0f; int offset = object*OBJECT_SIZE + OBJECT_PROPERTIES; float4 f = kernel_tex_fetch(__objects, offset); return __float_as_uint(f.w); } /* Generated texture coordinate on surface from where object was instanced */ ccl_device_inline float3 object_dupli_generated(KernelGlobals *kg, int object) { if(object == OBJECT_NONE) return make_float3(0.0f, 0.0f, 0.0f); int offset = object*OBJECT_SIZE + OBJECT_DUPLI; float4 f = kernel_tex_fetch(__objects, offset); return make_float3(f.x, f.y, f.z); } /* UV texture coordinate on surface from where object was instanced */ ccl_device_inline float3 object_dupli_uv(KernelGlobals *kg, int object) { if(object == OBJECT_NONE) return make_float3(0.0f, 0.0f, 0.0f); int offset = object*OBJECT_SIZE + OBJECT_DUPLI; float4 f = kernel_tex_fetch(__objects, offset + 1); return make_float3(f.x, f.y, 0.0f); } /* Information about mesh for motion blurred triangles and curves */ ccl_device_inline void object_motion_info(KernelGlobals *kg, int object, int *numsteps, int *numverts, int *numkeys) { int offset = object*OBJECT_SIZE + OBJECT_DUPLI; if(numkeys) { float4 f = kernel_tex_fetch(__objects, offset); *numkeys = __float_as_int(f.w); } float4 f = kernel_tex_fetch(__objects, offset + 1); if(numsteps) *numsteps = __float_as_int(f.z); if(numverts) *numverts = __float_as_int(f.w); } /* Pass ID for shader */ ccl_device int shader_pass_id(KernelGlobals *kg, const ShaderData *sd) { return kernel_tex_fetch(__shader_flag, (sd->shader & SHADER_MASK)*2 + 1); } /* Particle data from which object was instanced */ ccl_device_inline float particle_index(KernelGlobals *kg, int particle) { int offset = particle*PARTICLE_SIZE; float4 f = kernel_tex_fetch(__particles, offset + 0); return f.x; } ccl_device float particle_age(KernelGlobals *kg, int particle) { int offset = particle*PARTICLE_SIZE; float4 f = kernel_tex_fetch(__particles, offset + 0); return f.y; } ccl_device float particle_lifetime(KernelGlobals *kg, int particle) { int offset = particle*PARTICLE_SIZE; float4 f = kernel_tex_fetch(__particles, offset + 0); return f.z; } ccl_device float particle_size(KernelGlobals *kg, int particle) { int offset = particle*PARTICLE_SIZE; float4 f = kernel_tex_fetch(__particles, offset + 0); return f.w; } ccl_device float4 particle_rotation(KernelGlobals *kg, int particle) { int offset = particle*PARTICLE_SIZE; float4 f = kernel_tex_fetch(__particles, offset + 1); return f; } ccl_device float3 particle_location(KernelGlobals *kg, int particle) { int offset = particle*PARTICLE_SIZE; float4 f = kernel_tex_fetch(__particles, offset + 2); return make_float3(f.x, f.y, f.z); } ccl_device float3 particle_velocity(KernelGlobals *kg, int particle) { int offset = particle*PARTICLE_SIZE; float4 f2 = kernel_tex_fetch(__particles, offset + 2); float4 f3 = kernel_tex_fetch(__particles, offset + 3); return make_float3(f2.w, f3.x, f3.y); } ccl_device float3 particle_angular_velocity(KernelGlobals *kg, int particle) { int offset = particle*PARTICLE_SIZE; float4 f3 = kernel_tex_fetch(__particles, offset + 3); float4 f4 = kernel_tex_fetch(__particles, offset + 4); return make_float3(f3.z, f3.w, f4.x); } /* Object intersection in BVH */ ccl_device_inline float3 bvh_clamp_direction(float3 dir) { /* clamp absolute values by exp2f(-80.0f) to avoid division by zero when calculating inverse direction */ float ooeps = 8.271806E-25; return make_float3((fabsf(dir.x) > ooeps)? dir.x: copysignf(ooeps, dir.x), (fabsf(dir.y) > ooeps)? dir.y: copysignf(ooeps, dir.y), (fabsf(dir.z) > ooeps)? dir.z: copysignf(ooeps, dir.z)); } ccl_device_inline float3 bvh_inverse_direction(float3 dir) { return 1.0f / dir; } /* Transform ray into object space to enter static object in BVH */ ccl_device_inline void bvh_instance_push(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, float *t) { Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM); *P = transform_point(&tfm, ray->P); float len; *dir = bvh_clamp_direction(normalize_len(transform_direction(&tfm, ray->D), &len)); *idir = bvh_inverse_direction(*dir); if(*t != FLT_MAX) *t *= len; } /* Transorm ray to exit static object in BVH */ ccl_device_inline void bvh_instance_pop(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, float *t) { if(*t != FLT_MAX) { Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM); *t *= len(transform_direction(&tfm, 1.0f/(*idir))); } *P = ray->P; *dir = bvh_clamp_direction(ray->D); *idir = bvh_inverse_direction(*dir); } /* Same as above, but returns scale factor to apply to multiple intersection distances */ ccl_device_inline void bvh_instance_pop_factor(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, float *t_fac) { Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM); *t_fac = len(transform_direction(&tfm, 1.0f/(*idir))); *P = ray->P; *dir = bvh_clamp_direction(ray->D); *idir = bvh_inverse_direction(*dir); } #ifdef __OBJECT_MOTION__ /* Transform ray into object space to enter motion blurred object in BVH */ ccl_device_inline void bvh_instance_motion_push(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, float *t, Transform *tfm) { Transform itfm; *tfm = object_fetch_transform_motion_test(kg, object, ray->time, &itfm); *P = transform_point(&itfm, ray->P); float len; *dir = bvh_clamp_direction(normalize_len(transform_direction(&itfm, ray->D), &len)); *idir = bvh_inverse_direction(*dir); if(*t != FLT_MAX) *t *= len; } /* Transorm ray to exit motion blurred object in BVH */ ccl_device_inline void bvh_instance_motion_pop(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, float *t, Transform *tfm) { if(*t != FLT_MAX) *t *= len(transform_direction(tfm, 1.0f/(*idir))); *P = ray->P; *dir = bvh_clamp_direction(ray->D); *idir = bvh_inverse_direction(*dir); } /* Same as above, but returns scale factor to apply to multiple intersection distances */ ccl_device_inline void bvh_instance_motion_pop_factor(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *dir, float3 *idir, float *t_fac, Transform *tfm) { *t_fac = len(transform_direction(tfm, 1.0f/(*idir))); *P = ray->P; *dir = bvh_clamp_direction(ray->D); *idir = bvh_inverse_direction(*dir); } #endif CCL_NAMESPACE_END