/* * Copyright 2011, Blender Foundation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ CCL_NAMESPACE_BEGIN /* Musgrave fBm * * H: fractal increment parameter * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * * from "Texturing and Modelling: A procedural approach" */ __device_noinline float noise_musgrave_fBm(float3 p, NodeNoiseBasis basis, float H, float lacunarity, float octaves) { float rmd; float value = 0.0f; float pwr = 1.0f; float pwHL = powf(lacunarity, -H); int i; for(i = 0; i < float_to_int(octaves); i++) { value += snoise(p) * pwr; pwr *= pwHL; p *= lacunarity; } rmd = octaves - floorf(octaves); if(rmd != 0.0f) value += rmd * snoise(p) * pwr; return value; } /* Musgrave Multifractal * * H: highest fractal dimension * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm */ __device_noinline float noise_musgrave_multi_fractal(float3 p, NodeNoiseBasis basis, float H, float lacunarity, float octaves) { float rmd; float value = 1.0f; float pwr = 1.0f; float pwHL = powf(lacunarity, -H); int i; for(i = 0; i < float_to_int(octaves); i++) { value *= (pwr * snoise(p) + 1.0f); pwr *= pwHL; p *= lacunarity; } rmd = octaves - floorf(octaves); if(rmd != 0.0f) value *= (rmd * pwr * snoise(p) + 1.0f); /* correct? */ return value; } /* Musgrave Heterogeneous Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ __device_noinline float noise_musgrave_hetero_terrain(float3 p, NodeNoiseBasis basis, float H, float lacunarity, float octaves, float offset) { float value, increment, rmd; float pwHL = powf(lacunarity, -H); float pwr = pwHL; int i; /* first unscaled octave of function; later octaves are scaled */ value = offset + snoise(p); p *= lacunarity; for(i = 1; i < float_to_int(octaves); i++) { increment = (snoise(p) + offset) * pwr * value; value += increment; pwr *= pwHL; p *= lacunarity; } rmd = octaves - floorf(octaves); if(rmd != 0.0f) { increment = (snoise(p) + offset) * pwr * value; value += rmd * increment; } return value; } /* Hybrid Additive/Multiplicative Multifractal Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ __device_noinline float noise_musgrave_hybrid_multi_fractal(float3 p, NodeNoiseBasis basis, float H, float lacunarity, float octaves, float offset, float gain) { float result, signal, weight, rmd; float pwHL = powf(lacunarity, -H); float pwr = pwHL; int i; result = snoise(p) + offset; weight = gain * result; p *= lacunarity; for(i = 1; (weight > 0.001f) && (i < float_to_int(octaves)); i++) { if(weight > 1.0f) weight = 1.0f; signal = (snoise(p) + offset) * pwr; pwr *= pwHL; result += weight * signal; weight *= gain * signal; p *= lacunarity; } rmd = octaves - floorf(octaves); if(rmd != 0.0f) result += rmd * ((snoise(p) + offset) * pwr); return result; } /* Ridged Multifractal Terrain * * H: fractal dimension of the roughest area * lacunarity: gap between successive frequencies * octaves: number of frequencies in the fBm * offset: raises the terrain from `sea level' */ __device_noinline float noise_musgrave_ridged_multi_fractal(float3 p, NodeNoiseBasis basis, float H, float lacunarity, float octaves, float offset, float gain) { float result, signal, weight; float pwHL = powf(lacunarity, -H); float pwr = pwHL; int i; signal = offset - fabsf(snoise(p)); signal *= signal; result = signal; weight = 1.0f; for(i = 1; i < float_to_int(octaves); i++) { p *= lacunarity; weight = clamp(signal * gain, 0.0f, 1.0f); signal = offset - fabsf(snoise(p)); signal *= signal; signal *= weight; result += signal * pwr; pwr *= pwHL; } return result; } /* Shader */ __device float svm_musgrave(NodeMusgraveType type, float dimension, float lacunarity, float octaves, float offset, float intensity, float gain, float scale, float3 p) { NodeNoiseBasis basis = NODE_NOISE_PERLIN; p *= scale; if(type == NODE_MUSGRAVE_MULTIFRACTAL) return intensity*noise_musgrave_multi_fractal(p, basis, dimension, lacunarity, octaves); else if(type == NODE_MUSGRAVE_FBM) return intensity*noise_musgrave_fBm(p, basis, dimension, lacunarity, octaves); else if(type == NODE_MUSGRAVE_HYBRID_MULTIFRACTAL) return intensity*noise_musgrave_hybrid_multi_fractal(p, basis, dimension, lacunarity, octaves, offset, gain); else if(type == NODE_MUSGRAVE_RIDGED_MULTIFRACTAL) return intensity*noise_musgrave_ridged_multi_fractal(p, basis, dimension, lacunarity, octaves, offset, gain); else if(type == NODE_MUSGRAVE_HETERO_TERRAIN) return intensity*noise_musgrave_hetero_terrain(p, basis, dimension, lacunarity, octaves, offset); return 0.0f; } __device void svm_node_tex_musgrave(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int *offset) { uint4 node2 = read_node(kg, offset); uint4 node3 = read_node(kg, offset); uint type, co_offset, color_offset, fac_offset; uint dimension_offset, lacunarity_offset, detail_offset, offset_offset; uint gain_offset, scale_offset; decode_node_uchar4(node.y, &type, &co_offset, &color_offset, &fac_offset); decode_node_uchar4(node.z, &dimension_offset, &lacunarity_offset, &detail_offset, &offset_offset); decode_node_uchar4(node.w, &gain_offset, &scale_offset, NULL, NULL); float3 co = stack_load_float3(stack, co_offset); float dimension = stack_load_float_default(stack, dimension_offset, node2.x); float lacunarity = stack_load_float_default(stack, lacunarity_offset, node2.y); float detail = stack_load_float_default(stack, detail_offset, node2.z); float foffset = stack_load_float_default(stack, offset_offset, node2.w); float gain = stack_load_float_default(stack, gain_offset, node3.x); float scale = stack_load_float_default(stack, scale_offset, node3.y); dimension = fmaxf(dimension, 1e-5f); detail = clamp(detail, 0.0f, 16.0f); lacunarity = fmaxf(lacunarity, 1e-5f); float f = svm_musgrave((NodeMusgraveType)type, dimension, lacunarity, detail, foffset, 1.0f, gain, scale, co); if(stack_valid(fac_offset)) stack_store_float(stack, fac_offset, f); if(stack_valid(color_offset)) stack_store_float3(stack, color_offset, make_float3(f, f, f)); } CCL_NAMESPACE_END