# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # # ##### END GPL LICENSE BLOCK ##### # import bpy from rigify import RigifyError, get_layer_dict from rigify_utils import copy_bone_simple, get_side_name from rna_prop_ui import rna_idprop_ui_prop_get from functools import reduce METARIG_NAMES = "finger_01", "finger_02", "finger_03" def metarig_template(): # generated by rigify.write_meta_rig bpy.ops.object.mode_set(mode='EDIT') obj = bpy.context.active_object arm = obj.data bone = arm.edit_bones.new('finger.01') bone.head[:] = 0.0000, 0.0000, 0.0000 bone.tail[:] = 0.0353, -0.0184, -0.0053 bone.roll = -2.8722 bone.connected = False bone = arm.edit_bones.new('finger.02') bone.head[:] = 0.0353, -0.0184, -0.0053 bone.tail[:] = 0.0702, -0.0364, -0.0146 bone.roll = -2.7099 bone.connected = True bone.parent = arm.edit_bones['finger.01'] bone = arm.edit_bones.new('finger.03') bone.head[:] = 0.0702, -0.0364, -0.0146 bone.tail[:] = 0.0903, -0.0461, -0.0298 bone.roll = -2.1709 bone.connected = True bone.parent = arm.edit_bones['finger.02'] bpy.ops.object.mode_set(mode='OBJECT') pbone = obj.pose.bones['finger.01'] pbone['type'] = 'finger_curl' def metarig_definition(obj, orig_bone_name): ''' The bone given is the first in a chain Expects a chain of at least 2 children. eg. finger -> finger_01 -> finger_02 ''' bone_definition = [] orig_bone = obj.data.bones[orig_bone_name] bone_definition.append(orig_bone.name) bone = orig_bone chain = 0 while chain < 2: # first 2 bones only have 1 child children = bone.children if len(children) != 1: raise RigifyError("expected the chain to have 2 children from bone '%s' without a fork" % orig_bone_name) bone = children[0] bone_definition.append(bone.name) # finger_02, finger_03 chain += 1 if len(bone_definition) != len(METARIG_NAMES): raise RigifyError("internal problem, expected %d bones" % len(METARIG_NAMES)) return bone_definition def deform(obj, definitions, base_names, options): """ Creates the deform rig. """ bpy.ops.object.mode_set(mode='EDIT') # Create base digit bones: two bones, each half of the base digit. f1a = copy_bone_simple(obj.data, definitions[0], "DEF-%s.01" % base_names[definitions[0]], parent=True) f1b = copy_bone_simple(obj.data, definitions[0], "DEF-%s.02" % base_names[definitions[0]], parent=True) f1a.connected = False f1b.connected = False f1b.parent = f1a center = f1a.center f1a.tail = center f1b.head = center # Create the other deform bones. f2 = copy_bone_simple(obj.data, definitions[1], "DEF-%s" % base_names[definitions[1]], parent=True) f3 = copy_bone_simple(obj.data, definitions[2], "DEF-%s" % base_names[definitions[2]], parent=True) # Store names before leaving edit mode f1a_name = f1a.name f1b_name = f1b.name f2_name = f2.name f3_name = f3.name # Leave edit mode bpy.ops.object.mode_set(mode='OBJECT') # Get the pose bones f1a = obj.pose.bones[f1a_name] f1b = obj.pose.bones[f1b_name] f2 = obj.pose.bones[f2_name] f3 = obj.pose.bones[f3_name] # Constrain the base digit's bones con = f1a.constraints.new('DAMPED_TRACK') con.name = "trackto" con.target = obj con.subtarget = definitions[1] con = f1a.constraints.new('COPY_SCALE') con.name = "copy_scale" con.target = obj con.subtarget = definitions[0] con = f1b.constraints.new('COPY_ROTATION') con.name = "copy_rot" con.target = obj con.subtarget = definitions[0] # Constrain the other digit's bones con = f2.constraints.new('COPY_TRANSFORMS') con.name = "copy_transforms" con.target = obj con.subtarget = definitions[1] con = f3.constraints.new('COPY_TRANSFORMS') con.name = "copy_transforms" con.target = obj con.subtarget = definitions[2] def main(obj, bone_definition, base_names, options): # *** EDITMODE # get assosiated data arm = obj.data orig_ebone = arm.edit_bones[bone_definition[0]] obj.animation_data_create() # needed if its a new armature with no keys children = orig_ebone.children_recursive tot_len = reduce(lambda f, ebone: f + ebone.length, children, orig_ebone.length) # FIXME, the line below is far too arbitrary base_name = base_names[bone_definition[0]].rsplit(".", 2)[0] # first make a new bone at the location of the finger #control_ebone = arm.edit_bones.new(base_name) control_ebone = copy_bone_simple(arm, bone_definition[0], base_name + get_side_name(base_names[bone_definition[0]]), parent=True) control_bone_name = control_ebone.name # we dont know if we get the name requested control_ebone.connected = orig_ebone.connected control_ebone.parent = orig_ebone.parent control_ebone.length = tot_len # now add bones inbetween this and its children recursively # switching modes so store names only! children = [ebone.name for ebone in children] driver_bone_pairs = [] for child_bone_name in children: child_ebone = arm.edit_bones[child_bone_name] # finger.02 --> finger_driver.02 driver_bone_name = child_bone_name.split('.') driver_bone_name = driver_bone_name[0] + "_driver." + ".".join(driver_bone_name[1:]) driver_ebone = copy_bone_simple(arm, child_ebone.name, driver_bone_name) driver_ebone.length *= 0.5 # Insert driver_ebone in the chain without connected parents driver_ebone.connected = False driver_ebone.parent = child_ebone.parent child_ebone.connected = False child_ebone.parent = driver_ebone # Add the drivers to these when in posemode. driver_bone_pairs.append((child_bone_name, driver_bone_name)) del control_ebone deform(obj, bone_definition, base_names, options) # *** POSEMODE bpy.ops.object.mode_set(mode='OBJECT') orig_pbone = obj.pose.bones[bone_definition[0]] control_pbone = obj.pose.bones[control_bone_name] # only allow Y scale control_pbone.lock_scale = (True, False, True) control_pbone["bend_ratio"] = 0.4 prop = rna_idprop_ui_prop_get(control_pbone, "bend_ratio", create=True) prop["soft_min"] = 0.0 prop["soft_max"] = 1.0 con = orig_pbone.constraints.new('COPY_LOCATION') con.target = obj con.subtarget = control_bone_name con = orig_pbone.constraints.new('COPY_ROTATION') con.target = obj con.subtarget = control_bone_name # setup child drivers on each new smaller bone added. assume 2 for now. # drives the bones controller_path = control_pbone.path_to_id() # 'pose.bones["%s"]' % control_bone_name i = 0 for child_bone_name, driver_bone_name in driver_bone_pairs: # XXX - todo, any number if i == 2: break driver_pbone = obj.pose.bones[driver_bone_name] driver_pbone.rotation_mode = 'YZX' fcurve_driver = driver_pbone.driver_add("rotation_euler", 0) #obj.driver_add('pose.bones["%s"].scale', 1) #obj.animation_data.drivers[-1] # XXX, WATCH THIS driver = fcurve_driver.driver # scale target tar = driver.targets.new() tar.name = "scale" tar.id_type = 'OBJECT' tar.id = obj tar.data_path = controller_path + '.scale[1]' # bend target tar = driver.targets.new() tar.name = "br" tar.id_type = 'OBJECT' tar.id = obj tar.data_path = controller_path + '["bend_ratio"]' # XXX - todo, any number if i == 0: driver.expression = '(-scale+1.0)*pi*2.0*(1.0-br)' elif i == 1: driver.expression = '(-scale+1.0)*pi*2.0*br' child_pbone = obj.pose.bones[child_bone_name] # only allow X rotation driver_pbone.lock_rotation = child_pbone.lock_rotation = (False, True, True) i += 1 # last step setup layers layers = get_layer_dict(options) lay = layers["extra"] for child_bone_name, driver_bone_name in driver_bone_pairs: arm.bones[driver_bone_name].layer = lay lay = layers["main"] arm.bones[control_bone_name].layer = lay # no blending the result of this return None