#include "CcdPhysicsController.h" #include "Dynamics/RigidBody.h" #include "PHY_IMotionState.h" #include "BroadphaseCollision/BroadphaseProxy.h" #include "CollisionShapes/ConvexShape.h" #include "CcdPhysicsEnvironment.h" class BP_Proxy; ///todo: fill all the empty CcdPhysicsController methods, hook them up to the RigidBody class //'temporarily' global variables float gDeactivationTime = 2.f; bool gDisableDeactivation = false; float gLinearSleepingTreshold = 0.8f; float gAngularSleepingTreshold = 1.0f; #include "Dynamics/MassProps.h" SimdVector3 startVel(0,0,0);//-10000); CcdPhysicsController::CcdPhysicsController (const CcdConstructionInfo& ci) :m_cci(ci) { m_collisionDelay = 0; m_newClientInfo = 0; m_MotionState = ci.m_MotionState; m_broadphaseHandle = ci.m_broadphaseHandle; m_collisionShape = ci.m_collisionShape; CreateRigidbody(); #ifdef WIN32 if (m_body->getInvMass()) m_body->setLinearVelocity(startVel); #endif } void CcdPhysicsController::CreateRigidbody() { SimdTransform trans; float tmp[3]; m_MotionState->getWorldPosition(tmp[0],tmp[1],tmp[2]); trans.setOrigin(SimdVector3(tmp[0],tmp[1],tmp[2])); SimdQuaternion orn; m_MotionState->getWorldOrientation(orn[0],orn[1],orn[2],orn[3]); trans.setRotation(orn); MassProps mp(m_cci.m_mass, m_cci.m_localInertiaTensor); m_body = new RigidBody(mp,0,0,m_cci.m_friction,m_cci.m_restitution); // // init the rigidbody properly // m_body->setMassProps(m_cci.m_mass, m_cci.m_localInertiaTensor * m_cci.m_inertiaFactor); m_body->setGravity( m_cci.m_gravity); m_body->setDamping(m_cci.m_linearDamping, m_cci.m_angularDamping); m_body->setCenterOfMassTransform( trans ); } CcdPhysicsController::~CcdPhysicsController() { //will be reference counted, due to sharing //delete m_collisionShape; m_cci.m_physicsEnv->removeCcdPhysicsController(this); delete m_MotionState; delete m_body; } /** SynchronizeMotionStates ynchronizes dynas, kinematic and deformable entities (and do 'late binding') */ bool CcdPhysicsController::SynchronizeMotionStates(float time) { const SimdVector3& worldPos = m_body->getCenterOfMassPosition(); m_MotionState->setWorldPosition(worldPos[0],worldPos[1],worldPos[2]); const SimdQuaternion& worldquat = m_body->getOrientation(); m_MotionState->setWorldOrientation(worldquat[0],worldquat[1],worldquat[2],worldquat[3]); m_MotionState->calculateWorldTransformations(); float scale[3]; m_MotionState->getWorldScaling(scale[0],scale[1],scale[2]); SimdVector3 scaling(scale[0],scale[1],scale[2]); m_collisionShape->setLocalScaling(scaling); return true; } /** WriteMotionStateToDynamics synchronizes dynas, kinematic and deformable entities (and do 'late binding') */ void CcdPhysicsController::WriteMotionStateToDynamics(bool nondynaonly) { } void CcdPhysicsController::WriteDynamicsToMotionState() { } // controller replication void CcdPhysicsController::PostProcessReplica(class PHY_IMotionState* motionstate,class PHY_IPhysicsController* parentctrl) { m_MotionState = motionstate; m_broadphaseHandle = 0; m_body = 0; CreateRigidbody(); m_cci.m_physicsEnv->addCcdPhysicsController(this); /* SM_Object* dynaparent=0; SumoPhysicsController* sumoparentctrl = (SumoPhysicsController* )parentctrl; if (sumoparentctrl) { dynaparent = sumoparentctrl->GetSumoObject(); } SM_Object* orgsumoobject = m_sumoObj; m_sumoObj = new SM_Object( orgsumoobject->getShapeHandle(), orgsumoobject->getMaterialProps(), orgsumoobject->getShapeProps(), dynaparent); m_sumoObj->setRigidBody(orgsumoobject->isRigidBody()); m_sumoObj->setMargin(orgsumoobject->getMargin()); m_sumoObj->setPosition(orgsumoobject->getPosition()); m_sumoObj->setOrientation(orgsumoobject->getOrientation()); //if it is a dyna, register for a callback m_sumoObj->registerCallback(*this); m_sumoScene->add(* (m_sumoObj)); */ } // kinematic methods void CcdPhysicsController::RelativeTranslate(float dlocX,float dlocY,float dlocZ,bool local) { SimdVector3 dloc(dlocX,dlocY,dlocZ); SimdTransform xform = m_body->getCenterOfMassTransform(); if (local) { dloc = xform.getBasis()*dloc; } xform.setOrigin(xform.getOrigin() + dloc); this->m_body->setCenterOfMassTransform(xform); } void CcdPhysicsController::RelativeRotate(const float rotval[9],bool local) { if (m_body ) { SimdMatrix3x3 drotmat( rotval[0],rotval[1],rotval[2], rotval[4],rotval[5],rotval[6], rotval[8],rotval[9],rotval[10]); SimdMatrix3x3 currentOrn; GetWorldOrientation(currentOrn); SimdTransform xform = m_body->getCenterOfMassTransform(); xform.setBasis(xform.getBasis()*(local ? drotmat : (currentOrn.inverse() * drotmat * currentOrn))); m_body->setCenterOfMassTransform(xform); } } void CcdPhysicsController::GetWorldOrientation(SimdMatrix3x3& mat) { float orn[4]; m_MotionState->getWorldOrientation(orn[0],orn[1],orn[2],orn[3]); SimdQuaternion quat(orn[0],orn[1],orn[2],orn[3]); mat.setRotation(quat); } void CcdPhysicsController::getOrientation(float &quatImag0,float &quatImag1,float &quatImag2,float &quatReal) { SimdQuaternion q = m_body->getCenterOfMassTransform().getRotation(); quatImag0 = q[0]; quatImag1 = q[1]; quatImag2 = q[2]; quatReal = q[3]; } void CcdPhysicsController::setOrientation(float quatImag0,float quatImag1,float quatImag2,float quatReal) { m_body->activate(); SimdTransform xform = m_body->getCenterOfMassTransform(); xform.setRotation(SimdQuaternion(quatImag0,quatImag1,quatImag2,quatReal)); m_body->setCenterOfMassTransform(xform); } void CcdPhysicsController::setPosition(float posX,float posY,float posZ) { m_body->activate(); SimdTransform xform = m_body->getCenterOfMassTransform(); xform.setOrigin(SimdVector3(posX,posY,posZ)); m_body->setCenterOfMassTransform(xform); } void CcdPhysicsController::resolveCombinedVelocities(float linvelX,float linvelY,float linvelZ,float angVelX,float angVelY,float angVelZ) { } void CcdPhysicsController::getPosition(PHY__Vector3& pos) const { const SimdTransform& xform = m_body->getCenterOfMassTransform(); pos[0] = xform.getOrigin().x(); pos[1] = xform.getOrigin().y(); pos[2] = xform.getOrigin().z(); } void CcdPhysicsController::setScaling(float scaleX,float scaleY,float scaleZ) { if (!SimdFuzzyZero(m_cci.m_scaling.x()-scaleX) || !SimdFuzzyZero(m_cci.m_scaling.y()-scaleY) || !SimdFuzzyZero(m_cci.m_scaling.z()-scaleZ)) { m_cci.m_scaling = SimdVector3(scaleX,scaleY,scaleZ); if (m_body && m_body->GetCollisionShape()) { m_body->GetCollisionShape()->setLocalScaling(m_cci.m_scaling); m_body->GetCollisionShape()->CalculateLocalInertia(m_cci.m_mass, m_cci.m_localInertiaTensor); m_body->setMassProps(m_cci.m_mass, m_cci.m_localInertiaTensor * m_cci.m_inertiaFactor); } } } // physics methods void CcdPhysicsController::ApplyTorque(float torqueX,float torqueY,float torqueZ,bool local) { SimdVector3 torque(torqueX,torqueY,torqueZ); SimdTransform xform = m_body->getCenterOfMassTransform(); if (local) { torque = xform.getBasis()*torque; } m_body->applyTorque(torque); } void CcdPhysicsController::ApplyForce(float forceX,float forceY,float forceZ,bool local) { SimdVector3 force(forceX,forceY,forceZ); SimdTransform xform = m_body->getCenterOfMassTransform(); if (local) { force = xform.getBasis()*force; } m_body->applyCentralForce(force); } void CcdPhysicsController::SetAngularVelocity(float ang_velX,float ang_velY,float ang_velZ,bool local) { SimdVector3 angvel(ang_velX,ang_velY,ang_velZ); SimdTransform xform = m_body->getCenterOfMassTransform(); if (local) { angvel = xform.getBasis()*angvel; } m_body->setAngularVelocity(angvel); } void CcdPhysicsController::SetLinearVelocity(float lin_velX,float lin_velY,float lin_velZ,bool local) { SimdVector3 linVel(lin_velX,lin_velY,lin_velZ); SimdTransform xform = m_body->getCenterOfMassTransform(); if (local) { linVel = xform.getBasis()*linVel; } m_body->setLinearVelocity(linVel); } void CcdPhysicsController::applyImpulse(float attachX,float attachY,float attachZ, float impulseX,float impulseY,float impulseZ) { SimdVector3 impulse(impulseX,impulseY,impulseZ); SimdVector3 pos(attachX,attachY,attachZ); m_body->activate(); m_body->applyImpulse(impulse,pos); } void CcdPhysicsController::SetActive(bool active) { } // reading out information from physics void CcdPhysicsController::GetLinearVelocity(float& linvX,float& linvY,float& linvZ) { const SimdVector3& linvel = this->m_body->getLinearVelocity(); linvX = linvel.x(); linvY = linvel.y(); linvZ = linvel.z(); } void CcdPhysicsController::GetAngularVelocity(float& angVelX,float& angVelY,float& angVelZ) { const SimdVector3& angvel= m_body->getAngularVelocity(); angVelX = angvel.x(); angVelY = angvel.y(); angVelZ = angvel.z(); } void CcdPhysicsController::GetVelocity(const float posX,const float posY,const float posZ,float& linvX,float& linvY,float& linvZ) { SimdVector3 pos(posX,posY,posZ); SimdVector3 rel_pos = pos-m_body->getCenterOfMassPosition(); SimdVector3 linvel = m_body->getVelocityInLocalPoint(rel_pos); linvX = linvel.x(); linvY = linvel.y(); linvZ = linvel.z(); } void CcdPhysicsController::getReactionForce(float& forceX,float& forceY,float& forceZ) { } // dyna's that are rigidbody are free in orientation, dyna's with non-rigidbody are restricted void CcdPhysicsController::setRigidBody(bool rigid) { } // clientinfo for raycasts for example void* CcdPhysicsController::getNewClientInfo() { return m_newClientInfo; } void CcdPhysicsController::setNewClientInfo(void* clientinfo) { m_newClientInfo = clientinfo; } void CcdPhysicsController::UpdateDeactivation(float timeStep) { if ( (m_body->GetActivationState() == 2)) return; if ((m_body->getLinearVelocity().length2() < gLinearSleepingTreshold*gLinearSleepingTreshold) && (m_body->getAngularVelocity().length2() < gAngularSleepingTreshold*gAngularSleepingTreshold)) { m_body->m_deactivationTime += timeStep; } else { m_body->m_deactivationTime=0.f; m_body->SetActivationState(0); } } bool CcdPhysicsController::wantsSleeping() { //disable deactivation if (gDisableDeactivation || (gDeactivationTime == 0.f)) return false; //2 == ISLAND_SLEEPING, 3 == WANTS_DEACTIVATION if ( (m_body->GetActivationState() == 2) || (m_body->GetActivationState() == 3)) return true; if (m_body->m_deactivationTime> gDeactivationTime) { return true; } return false; }