// Begin License: // Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com). // All rights reserved. // // This file is part of the Carve CSG Library (http://carve-csg.com/) // // This file may be used under the terms of the GNU General Public // License version 2.0 as published by the Free Software Foundation // and appearing in the file LICENSE.GPL2 included in the packaging of // this file. // // This file is provided "AS IS" with NO WARRANTY OF ANY KIND, // INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE. // End: #if defined(HAVE_CONFIG_H) # include #endif #include #include #include #include #include #include #include #include "csg_detail.hpp" #include "csg_data.hpp" #include "intersect_debug.hpp" #include "intersect_common.hpp" #include "intersect_classify_common.hpp" #include "csg_collector.hpp" #include #include #include carve::csg::VertexPool::VertexPool() { } carve::csg::VertexPool::~VertexPool() { } void carve::csg::VertexPool::reset() { pool.clear(); } carve::csg::VertexPool::vertex_t *carve::csg::VertexPool::get(const vertex_t::vector_t &v) { if (!pool.size() || pool.back().size() == blocksize) { pool.push_back(std::vector()); pool.back().reserve(blocksize); } pool.back().push_back(vertex_t(v)); return &pool.back().back(); } bool carve::csg::VertexPool::inPool(vertex_t *v) const { for (pool_t::const_iterator i = pool.begin(); i != pool.end(); ++i) { if (v >= &(i->front()) && v <= &(i->back())) return true; } return false; } #if defined(CARVE_DEBUG_WRITE_PLY_DATA) void writePLY(const std::string &out_file, const carve::point::PointSet *points, bool ascii); void writePLY(const std::string &out_file, const carve::line::PolylineSet *lines, bool ascii); void writePLY(const std::string &out_file, const carve::mesh::MeshSet<3> *poly, bool ascii); static carve::mesh::MeshSet<3> *faceLoopsToPolyhedron(const carve::csg::FaceLoopList &fl) { std::vector::face_t *> faces; faces.reserve(fl.size()); for (carve::csg::FaceLoop *f = fl.head; f; f = f->next) { faces.push_back(f->orig_face->create(f->vertices.begin(), f->vertices.end(), false)); } carve::mesh::MeshSet<3> *poly = new carve::mesh::MeshSet<3>(faces); return poly; } #endif namespace { /** * \brief Sort a range [\a beg, \a end) of vertices in order of increasing dot product of vertex - \a base on \dir. * * @tparam[in] T a forward iterator type. * @param[in] dir The direction in which to sort vertices. * @param[in] base * @param[in] beg The start of the vertex range to sort. * @param[in] end The end of the vertex range to sort. * @param[out] out The sorted vertex result. * @param[in] size_hint A hint regarding the size of the output * vector (to avoid needing to be able to calculate \a * end - \a beg). */ template void orderVertices(iter_t beg, const iter_t end, const carve::mesh::MeshSet<3>::vertex_t::vector_t &dir, const carve::mesh::MeshSet<3>::vertex_t::vector_t &base, std::vector::vertex_t *> &out) { typedef std::vector::vertex_t *> > DVVector; std::vector::vertex_t *> > ordered_vertices; ordered_vertices.reserve(std::distance(beg, end)); for (; beg != end; ++beg) { carve::mesh::MeshSet<3>::vertex_t *v = *beg; ordered_vertices.push_back(std::make_pair(carve::geom::dot(v->v - base, dir), v)); } std::sort(ordered_vertices.begin(), ordered_vertices.end()); out.clear(); out.reserve(ordered_vertices.size()); for (DVVector::const_iterator i = ordered_vertices.begin(), e = ordered_vertices.end(); i != e; ++i) { out.push_back((*i).second); } } template void orderEdgeIntersectionVertices(iter_t beg, const iter_t end, const carve::mesh::MeshSet<3>::vertex_t::vector_t &dir, const carve::mesh::MeshSet<3>::vertex_t::vector_t &base, std::vector::vertex_t *> &out) { typedef std::vector, carve::mesh::MeshSet<3>::vertex_t *> > DVVector; DVVector ordered_vertices; ordered_vertices.reserve(std::distance(beg, end)); for (; beg != end; ++beg) { carve::mesh::MeshSet<3>::vertex_t *v = (*beg).first; double ovec = 0.0; for (carve::csg::detail::EdgeIntInfo::mapped_type::const_iterator j = (*beg).second.begin(); j != (*beg).second.end(); ++j) { ovec += (*j).second; } ordered_vertices.push_back(std::make_pair(std::make_pair(carve::geom::dot(v->v - base, dir), -ovec), v)); } std::sort(ordered_vertices.begin(), ordered_vertices.end()); out.clear(); out.reserve(ordered_vertices.size()); for (DVVector::const_iterator i = ordered_vertices.begin(), e = ordered_vertices.end(); i != e; ++i) { out.push_back((*i).second); } } /** * * * @param dir * @param base * @param beg * @param end */ template void selectOrderingProjection(iter_t beg, const iter_t end, carve::mesh::MeshSet<3>::vertex_t::vector_t &dir, carve::mesh::MeshSet<3>::vertex_t::vector_t &base) { double dx, dy, dz; carve::mesh::MeshSet<3>::vertex_t *min_x, *min_y, *min_z, *max_x, *max_y, *max_z; if (beg == end) return; min_x = max_x = min_y = max_y = min_z = max_z = *beg++; for (; beg != end; ++beg) { if (min_x->v.x > (*beg)->v.x) min_x = *beg; if (min_y->v.y > (*beg)->v.y) min_y = *beg; if (min_z->v.z > (*beg)->v.z) min_z = *beg; if (max_x->v.x < (*beg)->v.x) max_x = *beg; if (max_y->v.y < (*beg)->v.y) max_y = *beg; if (max_z->v.z < (*beg)->v.z) max_z = *beg; } dx = max_x->v.x - min_x->v.x; dy = max_y->v.y - min_y->v.y; dz = max_z->v.z - min_z->v.z; if (dx > dy) { if (dx > dz) { dir = max_x->v - min_x->v; base = min_x->v; } else { dir = max_z->v - min_z->v; base = min_z->v; } } else { if (dy > dz) { dir = max_y->v - min_y->v; base = min_y->v; } else { dir = max_z->v - min_z->v; base = min_z->v; } } } } namespace { struct dump_data { carve::mesh::MeshSet<3>::vertex_t *i_pt; carve::csg::IObj i_src; carve::csg::IObj i_tgt; dump_data(carve::mesh::MeshSet<3>::vertex_t *_i_pt, carve::csg::IObj _i_src, carve::csg::IObj _i_tgt) : i_pt(_i_pt), i_src(_i_src), i_tgt(_i_tgt) { } }; struct dump_sort { bool operator()(const dump_data &a, const dump_data &b) const { if (a.i_pt->v.x < b.i_pt->v.x) return true; if (a.i_pt->v.x > b.i_pt->v.x) return false; if (a.i_pt->v.y < b.i_pt->v.y) return true; if (a.i_pt->v.y > b.i_pt->v.y) return false; if (a.i_pt->v.z < b.i_pt->v.z) return true; if (a.i_pt->v.z > b.i_pt->v.z) return false; return false; } }; void dump_intersections(std::ostream &out, carve::csg::Intersections &csg_intersections) { std::vector temp; for (carve::csg::Intersections::const_iterator i = csg_intersections.begin(), ie = csg_intersections.end(); i != ie; ++i) { const carve::csg::IObj &i_src = ((*i).first); for (carve::csg::Intersections::mapped_type::const_iterator j = (*i).second.begin(), je = (*i).second.end(); j != je; ++j) { const carve::csg::IObj &i_tgt = ((*j).first); carve::mesh::MeshSet<3>::vertex_t *i_pt = ((*j).second); temp.push_back(dump_data(i_pt, i_src, i_tgt)); } } std::sort(temp.begin(), temp.end(), dump_sort()); for (size_t i = 0; i < temp.size(); ++i) { const carve::csg::IObj &i_src = temp[i].i_src; const carve::csg::IObj &i_tgt = temp[i].i_tgt; out << "INTERSECTION: " << temp[i].i_pt << " (" << temp[i].i_pt->v << ") " << "is " << i_src << ".." << i_tgt << std::endl; } #if defined(CARVE_DEBUG_WRITE_PLY_DATA) std::vector vertices; for (carve::csg::Intersections::const_iterator i = csg_intersections.begin(), ie = csg_intersections.end(); i != ie; ++i) { for (carve::csg::Intersections::mapped_type::const_iterator j = (*i).second.begin(), je = (*i).second.end(); j != je; ++j) { carve::mesh::MeshSet<3>::vertex_t *i_pt = ((*j).second); vertices.push_back(i_pt->v); } } carve::point::PointSet points(vertices); std::string outf("/tmp/intersection-points.ply"); ::writePLY(outf, &points, true); #endif } /** * \brief Populate a collection with the faces adjoining an edge. * * @tparam face_set_t A collection type. * @param e The edge for which to collect adjoining faces. * @param faces */ template inline void facesForVertex(carve::mesh::MeshSet<3>::vertex_t *v, const carve::csg::detail::VEVecMap &ve, face_set_t &faces) { carve::csg::detail::VEVecMap::const_iterator vi = ve.find(v); if (vi != ve.end()) { for (carve::csg::detail::VEVecMap::data_type::const_iterator i = (*vi).second.begin(); i != (*vi).second.end(); ++i) { faces.insert((*i)->face); } } } /** * \brief Populate a collection with the faces adjoining an edge. * * @tparam face_set_t A collection type. * @param e The edge for which to collect adjoining faces. * @param faces */ template inline void facesForEdge(carve::mesh::MeshSet<3>::edge_t *e, face_set_t &faces) { faces.insert(e->face); } /** * \brief Populate a collection with the faces adjoining a face. * * @tparam face_set_t A collection type. * @param f The face for which to collect adjoining faces. * @param faces */ template inline void facesForFace(carve::mesh::MeshSet<3>::face_t *f, face_set_t &faces) { faces.insert(f); } /** * \brief Populate a collection with the faces adjoining an intersection object. * * @tparam face_set_t A collection type holding const carve::poly::Polyhedron::face_t *. * @param obj The intersection object for which to collect adjoining faces. * @param faces */ template void facesForObject(const carve::csg::IObj &obj, const carve::csg::detail::VEVecMap &ve, face_set_t &faces) { switch (obj.obtype) { case carve::csg::IObj::OBTYPE_VERTEX: facesForVertex(obj.vertex, ve, faces); break; case carve::csg::IObj::OBTYPE_EDGE: facesForEdge(obj.edge, faces); break; case carve::csg::IObj::OBTYPE_FACE: facesForFace(obj.face, faces); break; default: break; } } } bool carve::csg::CSG::Hooks::hasHook(unsigned hook_num) { return hooks[hook_num].size() > 0; } void carve::csg::CSG::Hooks::intersectionVertex(const meshset_t::vertex_t *vertex, const IObjPairSet &intersections) { for (std::list::iterator j = hooks[INTERSECTION_VERTEX_HOOK].begin(); j != hooks[INTERSECTION_VERTEX_HOOK].end(); ++j) { (*j)->intersectionVertex(vertex, intersections); } } void carve::csg::CSG::Hooks::processOutputFace(std::vector &faces, const meshset_t::face_t *orig_face, bool flipped) { for (std::list::iterator j = hooks[PROCESS_OUTPUT_FACE_HOOK].begin(); j != hooks[PROCESS_OUTPUT_FACE_HOOK].end(); ++j) { (*j)->processOutputFace(faces, orig_face, flipped); } } void carve::csg::CSG::Hooks::resultFace(const meshset_t::face_t *new_face, const meshset_t::face_t *orig_face, bool flipped) { for (std::list::iterator j = hooks[RESULT_FACE_HOOK].begin(); j != hooks[RESULT_FACE_HOOK].end(); ++j) { (*j)->resultFace(new_face, orig_face, flipped); } } void carve::csg::CSG::Hooks::edgeDivision(const meshset_t::edge_t *orig_edge, size_t orig_edge_idx, const meshset_t::vertex_t *v1, const meshset_t::vertex_t *v2) { for (std::list::iterator j = hooks[EDGE_DIVISION_HOOK].begin(); j != hooks[EDGE_DIVISION_HOOK].end(); ++j) { (*j)->edgeDivision(orig_edge, orig_edge_idx, v1, v2); } } void carve::csg::CSG::Hooks::registerHook(Hook *hook, unsigned hook_bits) { for (unsigned i = 0; i < HOOK_MAX; ++i) { if (hook_bits & (1U << i)) { hooks[i].push_back(hook); } } } void carve::csg::CSG::Hooks::unregisterHook(Hook *hook) { for (unsigned i = 0; i < HOOK_MAX; ++i) { hooks[i].erase(std::remove(hooks[i].begin(), hooks[i].end(), hook), hooks[i].end()); } } void carve::csg::CSG::Hooks::reset() { std::set to_delete; for (unsigned i = 0; i < HOOK_MAX; ++i) { for (std::list::iterator j = hooks[i].begin(); j != hooks[i].end(); ++j) { to_delete.insert(*j); } hooks[i].clear(); } for (std::set::iterator i = to_delete.begin(); i != to_delete.end(); ++i) { delete *i; } } carve::csg::CSG::Hooks::Hooks() : hooks() { hooks.resize(HOOK_MAX); } carve::csg::CSG::Hooks::~Hooks() { reset(); } void carve::csg::CSG::makeVertexIntersections() { static carve::TimingName FUNC_NAME("CSG::makeVertexIntersections()"); carve::TimingBlock block(FUNC_NAME); vertex_intersections.clear(); for (Intersections::const_iterator i = intersections.begin(), ie = intersections.end(); i != ie; ++i) { const IObj &i_src = ((*i).first); for (Intersections::mapped_type::const_iterator j = (*i).second.begin(), je = (*i).second.end(); j != je; ++j) { const IObj &i_tgt = ((*j).first); meshset_t::vertex_t *i_pt = ((*j).second); vertex_intersections[i_pt].insert(std::make_pair(i_src, i_tgt)); } } } static carve::mesh::MeshSet<3>::vertex_t *chooseWeldPoint( const carve::csg::detail::VSet &equivalent, carve::csg::VertexPool &vertex_pool) { // XXX: choose a better weld point. if (!equivalent.size()) return NULL; for (carve::csg::detail::VSet::const_iterator i = equivalent.begin(), e = equivalent.end(); i != e; ++i) { if (!vertex_pool.inPool((*i))) return (*i); } return *equivalent.begin(); } static const carve::mesh::MeshSet<3>::vertex_t *weld( const carve::csg::detail::VSet &equivalent, carve::csg::VertexIntersections &vertex_intersections, carve::csg::VertexPool &vertex_pool) { carve::mesh::MeshSet<3>::vertex_t *weld_point = chooseWeldPoint(equivalent, vertex_pool); #if defined(CARVE_DEBUG) std::cerr << "weld: " << equivalent.size() << " vertices ( "; for (carve::csg::detail::VSet::const_iterator i = equivalent.begin(), e = equivalent.end(); i != e; ++i) { const carve::mesh::MeshSet<3>::vertex_t *v = (*i); std::cerr << " " << v; } std::cerr << ") to " << weld_point << std::endl; #endif if (!weld_point) return NULL; carve::csg::VertexIntersections::mapped_type &weld_tgt = (vertex_intersections[weld_point]); for (carve::csg::detail::VSet::const_iterator i = equivalent.begin(), e = equivalent.end(); i != e; ++i) { carve::mesh::MeshSet<3>::vertex_t *v = (*i); if (v != weld_point) { carve::csg::VertexIntersections::iterator j = vertex_intersections.find(v); if (j != vertex_intersections.end()) { weld_tgt.insert((*j).second.begin(), (*j).second.end()); vertex_intersections.erase(j); } } } return weld_point; } void carve::csg::CSG::groupIntersections() { #if 0 // old code, to be removed. static carve::TimingName GROUP_INTERSECTONS("groupIntersections()"); carve::TimingBlock block(GROUP_INTERSECTONS); std::vector vertices; detail::VVSMap graph; #if defined(CARVE_DEBUG) std::cerr << "groupIntersections()" << ": vertex_intersections.size()==" << vertex_intersections.size() << std::endl; #endif vertices.reserve(vertex_intersections.size()); for (carve::csg::VertexIntersections::const_iterator i = vertex_intersections.begin(), e = vertex_intersections.end(); i != e; ++i) { vertices.push_back((*i).first); } carve::geom3d::AABB aabb; aabb.fit(vertices.begin(), vertices.end(), carve::poly::vec_adapt_vertex_ptr()); Octree vertex_intersections_octree; vertex_intersections_octree.setBounds(aabb); vertex_intersections_octree.addVertices(vertices); std::vector out; for (size_t i = 0, l = vertices.size(); i != l; ++i) { // let's find all the vertices near this one. out.clear(); vertex_intersections_octree.findVerticesNearAllowDupes(vertices[i]->v, out); for (size_t j = 0; j < out.size(); ++j) { if (vertices[i] != out[j] && carve::geom::equal(vertices[i]->v, out[j]->v)) { #if defined(CARVE_DEBUG) std::cerr << "EQ: " << vertices[i] << "," << out[j] << " " << vertices[i]->v << "," << out[j]->v << std::endl; #endif graph[vertices[i]].insert(out[j]); graph[out[j]].insert(vertices[i]); } } } detail::VSet visited, open; while (graph.size()) { visited.clear(); open.clear(); detail::VVSMap::iterator i = graph.begin(); open.insert((*i).first); while (open.size()) { detail::VSet::iterator t = open.begin(); const meshset_t::vertex_t *o = (*t); open.erase(t); i = graph.find(o); CARVE_ASSERT(i != graph.end()); visited.insert(o); for (detail::VVSMap::mapped_type::const_iterator j = (*i).second.begin(), je = (*i).second.end(); j != je; ++j) { if (visited.count((*j)) == 0) { open.insert((*j)); } } graph.erase(i); } weld(visited, vertex_intersections, vertex_pool); } #endif } static void recordEdgeIntersectionInfo(carve::mesh::MeshSet<3>::vertex_t *intersection, carve::mesh::MeshSet<3>::edge_t *edge, const carve::csg::detail::VFSMap::mapped_type &intersected_faces, carve::csg::detail::Data &data) { carve::mesh::MeshSet<3>::vertex_t::vector_t edge_dir = edge->v2()->v - edge->v1()->v; carve::csg::detail::EdgeIntInfo::mapped_type &eint_info = data.emap[edge][intersection]; for (carve::csg::detail::VFSMap::mapped_type::const_iterator i = intersected_faces.begin(); i != intersected_faces.end(); ++i) { carve::mesh::MeshSet<3>::vertex_t::vector_t normal = (*i)->plane.N; eint_info.insert(std::make_pair((*i), carve::geom::dot(edge_dir, normal))); } } void carve::csg::CSG::intersectingFacePairs(detail::Data &data) { static carve::TimingName FUNC_NAME("CSG::intersectingFacePairs()"); carve::TimingBlock block(FUNC_NAME); // iterate over all intersection points. for (VertexIntersections::const_iterator i = vertex_intersections.begin(), ie = vertex_intersections.end(); i != ie; ++i) { meshset_t::vertex_t *i_pt = ((*i).first); detail::VFSMap::mapped_type &face_set = (data.fmap_rev[i_pt]); detail::VFSMap::mapped_type src_face_set; detail::VFSMap::mapped_type tgt_face_set; // for all pairs of intersecting objects at this point for (VertexIntersections::data_type::const_iterator j = (*i).second.begin(), je = (*i).second.end(); j != je; ++j) { const IObj &i_src = ((*j).first); const IObj &i_tgt = ((*j).second); src_face_set.clear(); tgt_face_set.clear(); // work out the faces involved. facesForObject(i_src, data.vert_to_edges, src_face_set); facesForObject(i_tgt, data.vert_to_edges, tgt_face_set); // this updates fmap_rev. std::copy(src_face_set.begin(), src_face_set.end(), set_inserter(face_set)); std::copy(tgt_face_set.begin(), tgt_face_set.end(), set_inserter(face_set)); // record the intersection with respect to any involved vertex. if (i_src.obtype == IObj::OBTYPE_VERTEX) data.vmap[i_src.vertex] = i_pt; if (i_tgt.obtype == IObj::OBTYPE_VERTEX) data.vmap[i_tgt.vertex] = i_pt; // record the intersection with respect to any involved edge. if (i_src.obtype == IObj::OBTYPE_EDGE) recordEdgeIntersectionInfo(i_pt, i_src.edge, tgt_face_set, data); if (i_tgt.obtype == IObj::OBTYPE_EDGE) recordEdgeIntersectionInfo(i_pt, i_tgt.edge, src_face_set, data); } // record the intersection with respect to each face. for (carve::csg::detail::VFSMap::mapped_type::const_iterator k = face_set.begin(), ke = face_set.end(); k != ke; ++k) { meshset_t::face_t *f = (*k); data.fmap[f].insert(i_pt); } } } void carve::csg::CSG::_generateVertexVertexIntersections(meshset_t::vertex_t *va, meshset_t::edge_t *eb) { if (intersections.intersects(va, eb->v1())) { return; } double d_v1 = carve::geom::distance2(va->v, eb->v1()->v); if (d_v1 < carve::EPSILON2) { intersections.record(va, eb->v1(), va); } } void carve::csg::CSG::generateVertexVertexIntersections(meshset_t::face_t *a, const std::vector &b) { meshset_t::edge_t *ea, *eb; ea = a->edge; do { for (size_t i = 0; i < b.size(); ++i) { meshset_t::face_t *t = b[i]; eb = t->edge; do { _generateVertexVertexIntersections(ea->v1(), eb); eb = eb->next; } while (eb != t->edge); } ea = ea->next; } while (ea != a->edge); } void carve::csg::CSG::_generateVertexEdgeIntersections(meshset_t::vertex_t *va, meshset_t::edge_t *eb) { if (intersections.intersects(va, eb)) { return; } carve::geom::aabb<3> eb_aabb; eb_aabb.fit(eb->v1()->v, eb->v2()->v); if (eb_aabb.maxAxisSeparation(va->v) > carve::EPSILON) { return; } double a = cross(eb->v2()->v - eb->v1()->v, va->v - eb->v1()->v).length2(); double b = (eb->v2()->v - eb->v1()->v).length2(); if (a < b * carve::EPSILON2) { // vertex-edge intersection intersections.record(eb, va, va); if (eb->rev) intersections.record(eb->rev, va, va); } } void carve::csg::CSG::generateVertexEdgeIntersections(meshset_t::face_t *a, const std::vector &b) { meshset_t::edge_t *ea, *eb; ea = a->edge; do { for (size_t i = 0; i < b.size(); ++i) { meshset_t::face_t *t = b[i]; eb = t->edge; do { _generateVertexEdgeIntersections(ea->v1(), eb); eb = eb->next; } while (eb != t->edge); } ea = ea->next; } while (ea != a->edge); } void carve::csg::CSG::_generateEdgeEdgeIntersections(meshset_t::edge_t *ea, meshset_t::edge_t *eb) { if (intersections.intersects(ea, eb)) { return; } meshset_t::vertex_t *v1 = ea->v1(), *v2 = ea->v2(); meshset_t::vertex_t *v3 = eb->v1(), *v4 = eb->v2(); carve::geom::aabb<3> ea_aabb, eb_aabb; ea_aabb.fit(v1->v, v2->v); eb_aabb.fit(v3->v, v4->v); if (ea_aabb.maxAxisSeparation(eb_aabb) > EPSILON) return; meshset_t::vertex_t::vector_t p1, p2; double mu1, mu2; switch (carve::geom3d::rayRayIntersection(carve::geom3d::Ray(v2->v - v1->v, v1->v), carve::geom3d::Ray(v4->v - v3->v, v3->v), p1, p2, mu1, mu2)) { case carve::RR_INTERSECTION: { // edges intersect if (mu1 >= 0.0 && mu1 <= 1.0 && mu2 >= 0.0 && mu2 <= 1.0) { meshset_t::vertex_t *p = vertex_pool.get((p1 + p2) / 2.0); intersections.record(ea, eb, p); if (ea->rev) intersections.record(ea->rev, eb, p); if (eb->rev) intersections.record(ea, eb->rev, p); if (ea->rev && eb->rev) intersections.record(ea->rev, eb->rev, p); } break; } case carve::RR_PARALLEL: { // edges parallel. any intersection of this type should have // been handled by generateVertexEdgeIntersections(). break; } case carve::RR_DEGENERATE: { throw carve::exception("degenerate edge"); break; } case carve::RR_NO_INTERSECTION: { break; } } } void carve::csg::CSG::generateEdgeEdgeIntersections(meshset_t::face_t *a, const std::vector &b) { meshset_t::edge_t *ea, *eb; ea = a->edge; do { for (size_t i = 0; i < b.size(); ++i) { meshset_t::face_t *t = b[i]; eb = t->edge; do { _generateEdgeEdgeIntersections(ea, eb); eb = eb->next; } while (eb != t->edge); } ea = ea->next; } while (ea != a->edge); } void carve::csg::CSG::_generateVertexFaceIntersections(meshset_t::face_t *fa, meshset_t::edge_t *eb) { if (intersections.intersects(eb->v1(), fa)) { return; } double d1 = carve::geom::distance(fa->plane, eb->v1()->v); if (fabs(d1) < carve::EPSILON && fa->containsPoint(eb->v1()->v)) { intersections.record(eb->v1(), fa, eb->v1()); } } void carve::csg::CSG::generateVertexFaceIntersections(meshset_t::face_t *a, const std::vector &b) { meshset_t::edge_t *eb; for (size_t i = 0; i < b.size(); ++i) { meshset_t::face_t *t = b[i]; eb = t->edge; do { _generateVertexFaceIntersections(a, eb); eb = eb->next; } while (eb != t->edge); } } void carve::csg::CSG::_generateEdgeFaceIntersections(meshset_t::face_t *fa, meshset_t::edge_t *eb) { if (intersections.intersects(eb, fa)) { return; } meshset_t::vertex_t::vector_t _p; if (fa->simpleLineSegmentIntersection(carve::geom3d::LineSegment(eb->v1()->v, eb->v2()->v), _p)) { meshset_t::vertex_t *p = vertex_pool.get(_p); intersections.record(eb, fa, p); if (eb->rev) intersections.record(eb->rev, fa, p); } } void carve::csg::CSG::generateEdgeFaceIntersections(meshset_t::face_t *a, const std::vector &b) { meshset_t::edge_t *eb; for (size_t i = 0; i < b.size(); ++i) { meshset_t::face_t *t = b[i]; eb = t->edge; do { _generateEdgeFaceIntersections(a, eb); eb = eb->next; } while (eb != t->edge); } } void carve::csg::CSG::generateIntersectionCandidates(meshset_t *a, const face_rtree_t *a_node, meshset_t *b, const face_rtree_t *b_node, face_pairs_t &face_pairs, bool descend_a) { if (!a_node->bbox.intersects(b_node->bbox)) { return; } if (a_node->child && (descend_a || !b_node->child)) { for (face_rtree_t *node = a_node->child; node; node = node->sibling) { generateIntersectionCandidates(a, node, b, b_node, face_pairs, false); } } else if (b_node->child) { for (face_rtree_t *node = b_node->child; node; node = node->sibling) { generateIntersectionCandidates(a, a_node, b, node, face_pairs, true); } } else { for (size_t i = 0; i < a_node->data.size(); ++i) { meshset_t::face_t *fa = a_node->data[i]; carve::geom::aabb<3> aabb_a = fa->getAABB(); if (aabb_a.maxAxisSeparation(b_node->bbox) > carve::EPSILON) continue; for (size_t j = 0; j < b_node->data.size(); ++j) { meshset_t::face_t *fb = b_node->data[j]; carve::geom::aabb<3> aabb_b = fb->getAABB(); if (aabb_b.maxAxisSeparation(aabb_a) > carve::EPSILON) continue; std::pair a_ra = fa->rangeInDirection(fa->plane.N, fa->edge->vert->v); std::pair b_ra = fb->rangeInDirection(fa->plane.N, fa->edge->vert->v); if (carve::rangeSeparation(a_ra, b_ra) > carve::EPSILON) continue; std::pair a_rb = fa->rangeInDirection(fb->plane.N, fb->edge->vert->v); std::pair b_rb = fb->rangeInDirection(fb->plane.N, fb->edge->vert->v); if (carve::rangeSeparation(a_rb, b_rb) > carve::EPSILON) continue; if (!facesAreCoplanar(fa, fb)) { face_pairs[fa].push_back(fb); face_pairs[fb].push_back(fa); } } } } } void carve::csg::CSG::generateIntersections(meshset_t *a, const face_rtree_t *a_rtree, meshset_t *b, const face_rtree_t *b_rtree, detail::Data &data) { face_pairs_t face_pairs; generateIntersectionCandidates(a, a_rtree, b, b_rtree, face_pairs); for (face_pairs_t::const_iterator i = face_pairs.begin(); i != face_pairs.end(); ++i) { meshset_t::face_t *f = (*i).first; meshset_t::edge_t *e = f->edge; do { data.vert_to_edges[e->v1()].push_back(e); e = e->next; } while (e != f->edge); } for (face_pairs_t::const_iterator i = face_pairs.begin(); i != face_pairs.end(); ++i) { generateVertexVertexIntersections((*i).first, (*i).second); } for (face_pairs_t::const_iterator i = face_pairs.begin(); i != face_pairs.end(); ++i) { generateVertexEdgeIntersections((*i).first, (*i).second); } for (face_pairs_t::const_iterator i = face_pairs.begin(); i != face_pairs.end(); ++i) { generateEdgeEdgeIntersections((*i).first, (*i).second); } for (face_pairs_t::const_iterator i = face_pairs.begin(); i != face_pairs.end(); ++i) { generateVertexFaceIntersections((*i).first, (*i).second); } for (face_pairs_t::const_iterator i = face_pairs.begin(); i != face_pairs.end(); ++i) { generateEdgeFaceIntersections((*i).first, (*i).second); } #if defined(CARVE_DEBUG) std::cerr << "makeVertexIntersections" << std::endl; #endif makeVertexIntersections(); #if defined(CARVE_DEBUG) std::cerr << " intersections.size() " << intersections.size() << std::endl; map_histogram(std::cerr, intersections); std::cerr << " vertex_intersections.size() " << vertex_intersections.size() << std::endl; map_histogram(std::cerr, vertex_intersections); #endif #if defined(CARVE_DEBUG) && defined(DEBUG_DRAW_INTERSECTIONS) HOOK(drawIntersections(vertex_intersections);); #endif #if defined(CARVE_DEBUG) std::cerr << " intersections.size() " << intersections.size() << std::endl; std::cerr << " vertex_intersections.size() " << vertex_intersections.size() << std::endl; #endif // notify about intersections. if (hooks.hasHook(Hooks::INTERSECTION_VERTEX_HOOK)) { for (VertexIntersections::const_iterator i = vertex_intersections.begin(); i != vertex_intersections.end(); ++i) { hooks.intersectionVertex((*i).first, (*i).second); } } // from here on, only vertex_intersections is used for intersection // information. // intersections still contains the vertex_to_face map. maybe that // should be moved out into another class. static_cast(intersections).clear(); } carve::csg::CSG::CSG() { } /** * \brief For each intersected edge, decompose into a set of vertex pairs representing an ordered set of edge fragments. * * @tparam[in,out] data Internal intersection data. data.emap is used to produce data.divided_edges. */ void carve::csg::CSG::divideIntersectedEdges(detail::Data &data) { static carve::TimingName FUNC_NAME("CSG::divideIntersectedEdges()"); carve::TimingBlock block(FUNC_NAME); for (detail::EIntMap::const_iterator i = data.emap.begin(), ei = data.emap.end(); i != ei; ++i) { meshset_t::edge_t *edge = (*i).first; const detail::EIntMap::mapped_type &int_info = (*i).second; std::vector &verts = data.divided_edges[edge]; orderEdgeIntersectionVertices(int_info.begin(), int_info.end(), edge->v2()->v - edge->v1()->v, edge->v1()->v, verts); } } carve::csg::CSG::~CSG() { } void carve::csg::CSG::makeFaceEdges(carve::csg::EdgeClassification &eclass, detail::Data &data) { detail::FSet face_b_set; for (detail::FVSMap::const_iterator i = data.fmap.begin(), ie = data.fmap.end(); i != ie; ++i) { meshset_t::face_t *face_a = (*i).first; const detail::FVSMap::mapped_type &face_a_intersections = ((*i).second); face_b_set.clear(); // work out the set of faces from the opposing polyhedron that intersect face_a. for (detail::FVSMap::mapped_type::const_iterator j = face_a_intersections.begin(), je = face_a_intersections.end(); j != je; ++j) { for (detail::VFSMap::mapped_type::const_iterator k = data.fmap_rev[*j].begin(), ke = data.fmap_rev[*j].end(); k != ke; ++k) { meshset_t::face_t *face_b = (*k); if (face_a != face_b && face_b->mesh->meshset != face_a->mesh->meshset) { face_b_set.insert(face_b); } } } // run through each intersecting face. for (detail::FSet::const_iterator j = face_b_set.begin(), je = face_b_set.end(); j != je; ++j) { meshset_t::face_t *face_b = (*j); const detail::FVSMap::mapped_type &face_b_intersections = (data.fmap[face_b]); std::vector vertices; vertices.reserve(std::min(face_a_intersections.size(), face_b_intersections.size())); // record the points of intersection between face_a and face_b std::set_intersection(face_a_intersections.begin(), face_a_intersections.end(), face_b_intersections.begin(), face_b_intersections.end(), std::back_inserter(vertices)); #if defined(CARVE_DEBUG) std::cerr << "face pair: " << face_a << ":" << face_b << " N(verts) " << vertices.size() << std::endl; for (std::vector::const_iterator i = vertices.begin(), e = vertices.end(); i != e; ++i) { std::cerr << (*i) << " " << (*i)->v << " (" << carve::geom::distance(face_a->plane, (*i)->v) << "," << carve::geom::distance(face_b->plane, (*i)->v) << ")" << std::endl; //CARVE_ASSERT(carve::geom3d::distance(face_a->plane_eqn, *(*i)) < EPSILON); //CARVE_ASSERT(carve::geom3d::distance(face_b->plane_eqn, *(*i)) < EPSILON); } #endif // if there are two points of intersection, then the added edge is simple to determine. if (vertices.size() == 2) { meshset_t::vertex_t *v1 = vertices[0]; meshset_t::vertex_t *v2 = vertices[1]; carve::geom3d::Vector c = (v1->v + v2->v) / 2; // determine whether the midpoint of the implied edge is contained in face_a and face_b #if defined(CARVE_DEBUG) std::cerr << "face_a->nVertices() = " << face_a->nVertices() << " face_a->containsPointInProjection(c) = " << face_a->containsPointInProjection(c) << std::endl; std::cerr << "face_b->nVertices() = " << face_b->nVertices() << " face_b->containsPointInProjection(c) = " << face_b->containsPointInProjection(c) << std::endl; #endif if (face_a->containsPointInProjection(c) && face_b->containsPointInProjection(c)) { #if defined(CARVE_DEBUG) std::cerr << "adding edge: " << v1 << "-" << v2 << std::endl; #if defined(DEBUG_DRAW_FACE_EDGES) HOOK(drawEdge(v1, v2, 1, 1, 1, 1, 1, 1, 1, 1, 2.0);); #endif #endif // record the edge, with class information. if (v1 > v2) std::swap(v1, v2); eclass[ordered_edge(v1, v2)] = carve::csg::EC2(carve::csg::EDGE_ON, carve::csg::EDGE_ON); data.face_split_edges[face_a].insert(std::make_pair(v1, v2)); data.face_split_edges[face_b].insert(std::make_pair(v1, v2)); } continue; } // otherwise, it's more complex. carve::geom3d::Vector base, dir; std::vector ordered; // skip coplanar edges. this simplifies the resulting // mesh. eventually all coplanar face regions of two polyhedra // must reach a point where they are no longer coplanar (or the // polyhedra are identical). if (!facesAreCoplanar(face_a, face_b)) { // order the intersection vertices (they must lie along a // vector, as the faces aren't coplanar). selectOrderingProjection(vertices.begin(), vertices.end(), dir, base); orderVertices(vertices.begin(), vertices.end(), dir, base, ordered); // for each possible edge in the ordering, test the midpoint, // and record if it's contained in face_a and face_b. for (int k = 0, ke = (int)ordered.size() - 1; k < ke; ++k) { meshset_t::vertex_t *v1 = ordered[k]; meshset_t::vertex_t *v2 = ordered[k + 1]; carve::geom3d::Vector c = (v1->v + v2->v) / 2; #if defined(CARVE_DEBUG) std::cerr << "testing edge: " << v1 << "-" << v2 << " at " << c << std::endl; std::cerr << "a: " << face_a->containsPointInProjection(c) << " b: " << face_b->containsPointInProjection(c) << std::endl; std::cerr << "face_a->containsPointInProjection(c): " << face_a->containsPointInProjection(c) << std::endl; std::cerr << "face_b->containsPointInProjection(c): " << face_b->containsPointInProjection(c) << std::endl; #endif if (face_a->containsPointInProjection(c) && face_b->containsPointInProjection(c)) { #if defined(CARVE_DEBUG) std::cerr << "adding edge: " << v1 << "-" << v2 << std::endl; #if defined(DEBUG_DRAW_FACE_EDGES) HOOK(drawEdge(v1, v2, .5, .5, .5, 1, .5, .5, .5, 1, 2.0);); #endif #endif // record the edge, with class information. if (v1 > v2) std::swap(v1, v2); eclass[ordered_edge(v1, v2)] = carve::csg::EC2(carve::csg::EDGE_ON, carve::csg::EDGE_ON); data.face_split_edges[face_a].insert(std::make_pair(v1, v2)); data.face_split_edges[face_b].insert(std::make_pair(v1, v2)); } } } } } #if defined(CARVE_DEBUG_WRITE_PLY_DATA) { V2Set edges; for (detail::FV2SMap::const_iterator i = data.face_split_edges.begin(); i != data.face_split_edges.end(); ++i) { edges.insert((*i).second.begin(), (*i).second.end()); } detail::VSet vertices; for (V2Set::const_iterator i = edges.begin(); i != edges.end(); ++i) { vertices.insert((*i).first); vertices.insert((*i).second); } carve::line::PolylineSet intersection_graph; intersection_graph.vertices.resize(vertices.size()); std::map vmap; size_t j = 0; for (detail::VSet::const_iterator i = vertices.begin(); i != vertices.end(); ++i) { intersection_graph.vertices[j].v = (*i)->v; vmap[(*i)] = j++; } for (V2Set::const_iterator i = edges.begin(); i != edges.end(); ++i) { size_t line[2]; line[0] = vmap[(*i).first]; line[1] = vmap[(*i).second]; intersection_graph.addPolyline(false, line, line + 2); } std::string out("/tmp/intersection-edges.ply"); ::writePLY(out, &intersection_graph, true); } #endif } /** * * * @param fll */ static void checkFaceLoopIntegrity(carve::csg::FaceLoopList &fll) { static carve::TimingName FUNC_NAME("CSG::checkFaceLoopIntegrity()"); carve::TimingBlock block(FUNC_NAME); std::unordered_map counts; for (carve::csg::FaceLoop *fl = fll.head; fl; fl = fl->next) { std::vector::vertex_t *> &loop = (fl->vertices); carve::mesh::MeshSet<3>::vertex_t *v1, *v2; v1 = loop[loop.size() - 1]; for (unsigned i = 0; i < loop.size(); ++i) { v2 = loop[i]; if (v1 < v2) { counts[std::make_pair(v1, v2)]++; } else { counts[std::make_pair(v2, v1)]--; } v1 = v2; } } for (std::unordered_map::const_iterator x = counts.begin(), xe = counts.end(); x != xe; ++x) { if ((*x).second) { std::cerr << "FACE LOOP ERROR: " << (*x).first.first << "-" << (*x).first.second << " : " << (*x).second << std::endl; } } } /** * * * @param a * @param b * @param vclass * @param eclass * @param a_face_loops * @param b_face_loops * @param a_edge_count * @param b_edge_count * @param hooks */ void carve::csg::CSG::calc(meshset_t *a, const face_rtree_t *a_rtree, meshset_t *b, const face_rtree_t *b_rtree, carve::csg::VertexClassification &vclass, carve::csg::EdgeClassification &eclass, carve::csg::FaceLoopList &a_face_loops, carve::csg::FaceLoopList &b_face_loops, size_t &a_edge_count, size_t &b_edge_count) { detail::Data data; #if defined(CARVE_DEBUG) std::cerr << "init" << std::endl; #endif init(); generateIntersections(a, a_rtree, b, b_rtree, data); #if defined(CARVE_DEBUG) std::cerr << "intersectingFacePairs" << std::endl; #endif intersectingFacePairs(data); #if defined(CARVE_DEBUG) std::cerr << "emap:" << std::endl; map_histogram(std::cerr, data.emap); std::cerr << "fmap:" << std::endl; map_histogram(std::cerr, data.fmap); std::cerr << "fmap_rev:" << std::endl; map_histogram(std::cerr, data.fmap_rev); #endif // std::cerr << "removeCoplanarFaces" << std::endl; // fp_intersections.removeCoplanarFaces(); #if defined(CARVE_DEBUG) && defined(DEBUG_DRAW_OCTREE) HOOK(drawOctree(a->octree);); HOOK(drawOctree(b->octree);); #endif #if defined(CARVE_DEBUG) std::cerr << "divideIntersectedEdges" << std::endl; #endif divideIntersectedEdges(data); #if defined(CARVE_DEBUG) std::cerr << "makeFaceEdges" << std::endl; #endif // makeFaceEdges(data.face_split_edges, eclass, data.fmap, data.fmap_rev); makeFaceEdges(eclass, data); #if defined(CARVE_DEBUG) std::cerr << "generateFaceLoops" << std::endl; #endif a_edge_count = generateFaceLoops(a, data, a_face_loops); b_edge_count = generateFaceLoops(b, data, b_face_loops); #if defined(CARVE_DEBUG) std::cerr << "generated " << a_edge_count << " edges for poly a" << std::endl; std::cerr << "generated " << b_edge_count << " edges for poly b" << std::endl; #endif #if defined(CARVE_DEBUG_WRITE_PLY_DATA) { std::auto_ptr > poly(faceLoopsToPolyhedron(a_face_loops)); writePLY("/tmp/a_split.ply", poly.get(), false); } { std::auto_ptr > poly(faceLoopsToPolyhedron(b_face_loops)); writePLY("/tmp/b_split.ply", poly.get(), false); } #endif // checkFaceLoopIntegrity(a_face_loops); // checkFaceLoopIntegrity(b_face_loops); #if defined(CARVE_DEBUG) std::cerr << "classify" << std::endl; #endif // initialize some classification information. for (std::vector::iterator i = a->vertex_storage.begin(), e = a->vertex_storage.end(); i != e; ++i) { vclass[map_vertex(data.vmap, &(*i))].cls[0] = POINT_ON; } for (std::vector::iterator i = b->vertex_storage.begin(), e = b->vertex_storage.end(); i != e; ++i) { vclass[map_vertex(data.vmap, &(*i))].cls[1] = POINT_ON; } for (VertexIntersections::const_iterator i = vertex_intersections.begin(), e = vertex_intersections.end(); i != e; ++i) { vclass[(*i).first] = PC2(POINT_ON, POINT_ON); } #if defined(CARVE_DEBUG) std::cerr << data.divided_edges.size() << " edges are split" << std::endl; std::cerr << data.face_split_edges.size() << " faces are split" << std::endl; std::cerr << "poly a: " << a_face_loops.size() << " face loops" << std::endl; std::cerr << "poly b: " << b_face_loops.size() << " face loops" << std::endl; #endif // std::cerr << "OCTREE A:" << std::endl; // dump_octree_stats(a->octree.root, 0); // std::cerr << "OCTREE B:" << std::endl; // dump_octree_stats(b->octree.root, 0); } /** * * * @param shared_edges * @param result_list * @param shared_edge_ptr */ static void returnSharedEdges(carve::csg::V2Set &shared_edges, std::list *> &result_list, carve::csg::V2Set *shared_edge_ptr) { // need to convert shared edges to point into result typedef std::map::vertex_t *> remap_type; remap_type remap; for (std::list *>::iterator list_it = result_list.begin(); list_it != result_list.end(); list_it++) { carve::mesh::MeshSet<3> *result = *list_it; if (result) { for (std::vector::vertex_t>::iterator it = result->vertex_storage.begin(); it != result->vertex_storage.end(); it++) { remap.insert(std::make_pair((*it).v, &(*it))); } } } for (carve::csg::V2Set::iterator it = shared_edges.begin(); it != shared_edges.end(); it++) { remap_type::iterator first_it = remap.find(((*it).first)->v); remap_type::iterator second_it = remap.find(((*it).second)->v); CARVE_ASSERT(first_it != remap.end() && second_it != remap.end()); shared_edge_ptr->insert(std::make_pair(first_it->second, second_it->second)); } } /** * * * @param a * @param b * @param collector * @param hooks * @param shared_edges_ptr * @param classify_type * * @return */ carve::mesh::MeshSet<3> *carve::csg::CSG::compute(meshset_t *a, meshset_t *b, carve::csg::CSG::Collector &collector, carve::csg::V2Set *shared_edges_ptr, CLASSIFY_TYPE classify_type) { static carve::TimingName FUNC_NAME("CSG::compute"); carve::TimingBlock block(FUNC_NAME); VertexClassification vclass; EdgeClassification eclass; FLGroupList a_loops_grouped; FLGroupList b_loops_grouped; FaceLoopList a_face_loops; FaceLoopList b_face_loops; size_t a_edge_count; size_t b_edge_count; std::auto_ptr a_rtree(face_rtree_t::construct_STR(a->faceBegin(), a->faceEnd(), 4, 4)); std::auto_ptr b_rtree(face_rtree_t::construct_STR(b->faceBegin(), b->faceEnd(), 4, 4)); { static carve::TimingName FUNC_NAME("CSG::compute - calc()"); carve::TimingBlock block(FUNC_NAME); calc(a, a_rtree.get(), b, b_rtree.get(), vclass, eclass,a_face_loops, b_face_loops, a_edge_count, b_edge_count); } detail::LoopEdges a_edge_map; detail::LoopEdges b_edge_map; { static carve::TimingName FUNC_NAME("CSG::compute - makeEdgeMap()"); carve::TimingBlock block(FUNC_NAME); makeEdgeMap(a_face_loops, a_edge_count, a_edge_map); makeEdgeMap(b_face_loops, b_edge_count, b_edge_map); } { static carve::TimingName FUNC_NAME("CSG::compute - sortFaceLoopLists()"); carve::TimingBlock block(FUNC_NAME); a_edge_map.sortFaceLoopLists(); b_edge_map.sortFaceLoopLists(); } V2Set shared_edges; { static carve::TimingName FUNC_NAME("CSG::compute - findSharedEdges()"); carve::TimingBlock block(FUNC_NAME); findSharedEdges(a_edge_map, b_edge_map, shared_edges); } { static carve::TimingName FUNC_NAME("CSG::compute - groupFaceLoops()"); carve::TimingBlock block(FUNC_NAME); groupFaceLoops(a, a_face_loops, a_edge_map, shared_edges, a_loops_grouped); groupFaceLoops(b, b_face_loops, b_edge_map, shared_edges, b_loops_grouped); #if defined(CARVE_DEBUG) std::cerr << "*** a_loops_grouped.size(): " << a_loops_grouped.size() << std::endl; std::cerr << "*** b_loops_grouped.size(): " << b_loops_grouped.size() << std::endl; #endif } #if defined(CARVE_DEBUG) && defined(DEBUG_DRAW_GROUPS) { float n = 1.0 / (a_loops_grouped.size() + b_loops_grouped.size() + 1); float H = 0.0, S = 1.0, V = 1.0; float r, g, b; for (FLGroupList::const_iterator i = a_loops_grouped.begin(); i != a_loops_grouped.end(); ++i) { carve::colour::HSV2RGB(H, S, V, r, g, b); H += n; drawFaceLoopList((*i).face_loops, r, g, b, 1.0, r * .5, g * .5, b * .5, 1.0, true); } for (FLGroupList::const_iterator i = b_loops_grouped.begin(); i != b_loops_grouped.end(); ++i) { carve::colour::HSV2RGB(H, S, V, r, g, b); H += n; drawFaceLoopList((*i).face_loops, r, g, b, 1.0, r * .5, g * .5, b * .5, 1.0, true); } for (FLGroupList::const_iterator i = a_loops_grouped.begin(); i != a_loops_grouped.end(); ++i) { drawFaceLoopListWireframe((*i).face_loops); } for (FLGroupList::const_iterator i = b_loops_grouped.begin(); i != b_loops_grouped.end(); ++i) { drawFaceLoopListWireframe((*i).face_loops); } } #endif switch (classify_type) { case CLASSIFY_EDGE: classifyFaceGroupsEdge(shared_edges, vclass, a, a_rtree.get(), a_loops_grouped, a_edge_map, b, b_rtree.get(), b_loops_grouped, b_edge_map, collector); break; case CLASSIFY_NORMAL: classifyFaceGroups(shared_edges, vclass, a, a_rtree.get(), a_loops_grouped, a_edge_map, b, b_rtree.get(), b_loops_grouped, b_edge_map, collector); break; } meshset_t *result = collector.done(hooks); if (result != NULL && shared_edges_ptr != NULL) { std::list result_list; result_list.push_back(result); returnSharedEdges(shared_edges, result_list, shared_edges_ptr); } return result; } /** * * * @param a * @param b * @param op * @param hooks * @param shared_edges * @param classify_type * * @return */ carve::mesh::MeshSet<3> *carve::csg::CSG::compute(meshset_t *a, meshset_t *b, carve::csg::CSG::OP op, carve::csg::V2Set *shared_edges, CLASSIFY_TYPE classify_type) { Collector *coll = makeCollector(op, a, b); if (!coll) return NULL; meshset_t *result = compute(a, b, *coll, shared_edges, classify_type); delete coll; return result; } /** * * * @param closed * @param open * @param FaceClass * @param result * @param hooks * @param shared_edges_ptr * * @return */ bool carve::csg::CSG::sliceAndClassify(meshset_t *closed, meshset_t *open, std::list > &result, carve::csg::V2Set *shared_edges_ptr) { if (!closed->isClosed()) return false; carve::csg::VertexClassification vclass; carve::csg::EdgeClassification eclass; carve::csg::FLGroupList a_loops_grouped; carve::csg::FLGroupList b_loops_grouped; carve::csg::FaceLoopList a_face_loops; carve::csg::FaceLoopList b_face_loops; size_t a_edge_count; size_t b_edge_count; std::auto_ptr closed_rtree(face_rtree_t::construct_STR(closed->faceBegin(), closed->faceEnd(), 4, 4)); std::auto_ptr open_rtree(face_rtree_t::construct_STR(open->faceBegin(), open->faceEnd(), 4, 4)); calc(closed, closed_rtree.get(), open, open_rtree.get(), vclass, eclass,a_face_loops, b_face_loops, a_edge_count, b_edge_count); detail::LoopEdges a_edge_map; detail::LoopEdges b_edge_map; makeEdgeMap(a_face_loops, a_edge_count, a_edge_map); makeEdgeMap(b_face_loops, b_edge_count, b_edge_map); carve::csg::V2Set shared_edges; findSharedEdges(a_edge_map, b_edge_map, shared_edges); groupFaceLoops(closed, a_face_loops, a_edge_map, shared_edges, a_loops_grouped); groupFaceLoops(open, b_face_loops, b_edge_map, shared_edges, b_loops_grouped); halfClassifyFaceGroups(shared_edges, vclass, closed, closed_rtree.get(), a_loops_grouped, a_edge_map, open, open_rtree.get(), b_loops_grouped, b_edge_map, result); if (shared_edges_ptr != NULL) { std::list result_list; for (std::list >::iterator it = result.begin(); it != result.end(); it++) { result_list.push_back(it->second); } returnSharedEdges(shared_edges, result_list, shared_edges_ptr); } return true; } /** * * * @param a * @param b * @param a_sliced * @param b_sliced * @param hooks * @param shared_edges_ptr */ void carve::csg::CSG::slice(meshset_t *a, meshset_t *b, std::list &a_sliced, std::list &b_sliced, carve::csg::V2Set *shared_edges_ptr) { carve::csg::VertexClassification vclass; carve::csg::EdgeClassification eclass; carve::csg::FLGroupList a_loops_grouped; carve::csg::FLGroupList b_loops_grouped; carve::csg::FaceLoopList a_face_loops; carve::csg::FaceLoopList b_face_loops; size_t a_edge_count; size_t b_edge_count; std::auto_ptr a_rtree(face_rtree_t::construct_STR(a->faceBegin(), a->faceEnd(), 4, 4)); std::auto_ptr b_rtree(face_rtree_t::construct_STR(b->faceBegin(), b->faceEnd(), 4, 4)); calc(a, a_rtree.get(), b, b_rtree.get(), vclass, eclass,a_face_loops, b_face_loops, a_edge_count, b_edge_count); detail::LoopEdges a_edge_map; detail::LoopEdges b_edge_map; makeEdgeMap(a_face_loops, a_edge_count, a_edge_map); makeEdgeMap(b_face_loops, b_edge_count, b_edge_map); carve::csg::V2Set shared_edges; findSharedEdges(a_edge_map, b_edge_map, shared_edges); groupFaceLoops(a, a_face_loops, a_edge_map, shared_edges, a_loops_grouped); groupFaceLoops(b, b_face_loops, b_edge_map, shared_edges, b_loops_grouped); for (carve::csg::FLGroupList::iterator i = a_loops_grouped.begin(), e = a_loops_grouped.end(); i != e; ++i) { Collector *all = makeCollector(ALL, a, b); all->collect(&*i, hooks); a_sliced.push_back(all->done(hooks)); delete all; } for (carve::csg::FLGroupList::iterator i = b_loops_grouped.begin(), e = b_loops_grouped.end(); i != e; ++i) { Collector *all = makeCollector(ALL, a, b); all->collect(&*i, hooks); b_sliced.push_back(all->done(hooks)); delete all; } if (shared_edges_ptr != NULL) { std::list result_list; result_list.insert(result_list.end(), a_sliced.begin(), a_sliced.end()); result_list.insert(result_list.end(), b_sliced.begin(), b_sliced.end()); returnSharedEdges(shared_edges, result_list, shared_edges_ptr); } } /** * * */ void carve::csg::CSG::init() { intersections.clear(); vertex_intersections.clear(); vertex_pool.reset(); }