Merge topic 'coordSysTransform'

74f8885d3 Move helper classes into detail namespace.
9fd821ed9 Template on DeviceAdapter.
961f6a585 Add coordinate system transformation.

Acked-by: Kitware Robot <kwrobot@kitware.com>
Merge-request: !1275
This commit is contained in:
Dave Pugmire 2018-06-21 17:48:40 +00:00 committed by Kitware Robot
commit 05143f633d
4 changed files with 448 additions and 0 deletions

@ -25,6 +25,7 @@ set(headers
CellMeasure.h
Clip.h
ContourTreeUniform.h
CoordinateSystemTransform.h
CosmoTools.h
CrossProduct.h
DispatcherMapField.h

@ -0,0 +1,230 @@
//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#ifndef vtk_m_worklet_CoordinateSystemTransform_h
#define vtk_m_worklet_CoordinateSystemTransform_h
#include <vtkm/Math.h>
#include <vtkm/Matrix.h>
#include <vtkm/Transform3D.h>
#include <vtkm/VectorAnalysis.h>
#include <vtkm/worklet/DispatcherMapField.h>
#include <vtkm/worklet/WorkletMapField.h>
namespace vtkm
{
namespace worklet
{
namespace detail
{
template <typename T>
struct CylToCar : public vtkm::worklet::WorkletMapField
{
using ControlSignature = void(FieldIn<Vec3>, FieldOut<Vec3>);
using ExecutionSignature = _2(_1);
//Functor
VTKM_EXEC vtkm::Vec<T, 3> operator()(const vtkm::Vec<T, 3>& vec) const
{
vtkm::Vec<T, 3> res(vec[0] * static_cast<T>(vtkm::Cos(vec[1])),
vec[0] * static_cast<T>(vtkm::Sin(vec[1])),
vec[2]);
return res;
}
};
template <typename T>
struct CarToCyl : public vtkm::worklet::WorkletMapField
{
using ControlSignature = void(FieldIn<Vec3>, FieldOut<Vec3>);
using ExecutionSignature = _2(_1);
//Functor
VTKM_EXEC vtkm::Vec<T, 3> operator()(const vtkm::Vec<T, 3>& vec) const
{
T R = vtkm::Sqrt(vec[0] * vec[0] + vec[1] * vec[1]);
T Theta = 0;
if (vec[0] == 0 && vec[1] == 0)
Theta = 0;
else if (vec[0] < 0)
Theta = -vtkm::ASin(vec[1] / R) + static_cast<T>(vtkm::Pi());
else
Theta = vtkm::ASin(vec[1] / R);
vtkm::Vec<T, 3> res(R, Theta, vec[2]);
return res;
}
};
template <typename T>
struct SphereToCar : public vtkm::worklet::WorkletMapField
{
using ControlSignature = void(FieldIn<Vec3>, FieldOut<Vec3>);
using ExecutionSignature = _2(_1);
//Functor
VTKM_EXEC vtkm::Vec<T, 3> operator()(const vtkm::Vec<T, 3>& vec) const
{
T R = vec[0];
T Theta = vec[1];
T Phi = vec[2];
T sinTheta = static_cast<T>(vtkm::Sin(Theta));
T cosTheta = static_cast<T>(vtkm::Cos(Theta));
T sinPhi = static_cast<T>(vtkm::Sin(Phi));
T cosPhi = static_cast<T>(vtkm::Cos(Phi));
T x = R * sinTheta * cosPhi;
T y = R * sinTheta * sinPhi;
T z = R * cosTheta;
vtkm::Vec<T, 3> r(x, y, z);
return r;
}
};
template <typename T>
struct CarToSphere : public vtkm::worklet::WorkletMapField
{
using ControlSignature = void(FieldIn<Vec3>, FieldOut<Vec3>);
using ExecutionSignature = _2(_1);
//Functor
VTKM_EXEC vtkm::Vec<T, 3> operator()(const vtkm::Vec<T, 3>& vec) const
{
T R = vtkm::Sqrt(vtkm::Dot(vec, vec));
T Theta = 0;
if (R > 0)
Theta = vtkm::ACos(vec[2] / R);
T Phi = vtkm::ATan2(vec[1], vec[0]);
if (Phi < 0)
Phi += static_cast<T>(vtkm::TwoPi());
return vtkm::Vec<T, 3>(R, Theta, Phi);
}
};
};
template <typename T>
class CylindricalCoordinateTransform
{
public:
VTKM_CONT
CylindricalCoordinateTransform()
: cartesianToCylindrical(true)
{
}
VTKM_CONT void SetCartesianToCylindrical() { cartesianToCylindrical = true; }
VTKM_CONT void SetCylindricalToCartesian() { cartesianToCylindrical = false; }
template <typename CoordsStorageType, typename DeviceAdapterTag>
void Run(const vtkm::cont::ArrayHandle<vtkm::Vec<T, 3>, CoordsStorageType>& inPoints,
vtkm::cont::ArrayHandle<vtkm::Vec<T, 3>, CoordsStorageType>& outPoints,
DeviceAdapterTag) const
{
if (cartesianToCylindrical)
{
vtkm::worklet::DispatcherMapField<detail::CarToCyl<T>> dispatcher;
dispatcher.Invoke(inPoints, outPoints);
}
else
{
vtkm::worklet::DispatcherMapField<detail::CylToCar<T>> dispatcher;
dispatcher.Invoke(inPoints, outPoints);
}
}
template <typename CoordsStorageType, typename DeviceAdapterTag>
void Run(const vtkm::cont::CoordinateSystem& inPoints,
vtkm::cont::ArrayHandle<vtkm::Vec<T, 3>, CoordsStorageType>& outPoints,
DeviceAdapterTag) const
{
if (cartesianToCylindrical)
{
vtkm::worklet::DispatcherMapField<detail::CarToCyl<T>> dispatcher;
dispatcher.Invoke(inPoints, outPoints);
}
else
{
vtkm::worklet::DispatcherMapField<detail::CylToCar<T>> dispatcher;
dispatcher.Invoke(inPoints, outPoints);
}
}
private:
bool cartesianToCylindrical;
};
template <typename T>
class SphericalCoordinateTransform
{
public:
VTKM_CONT
SphericalCoordinateTransform()
: CartesianToSpherical(true)
{
}
VTKM_CONT void SetCartesianToSpherical() { CartesianToSpherical = true; }
VTKM_CONT void SetSphericalToCartesian() { CartesianToSpherical = false; }
template <typename CoordsStorageType, typename DeviceAdapterTag>
void Run(const vtkm::cont::ArrayHandle<vtkm::Vec<T, 3>, CoordsStorageType>& inPoints,
vtkm::cont::ArrayHandle<vtkm::Vec<T, 3>, CoordsStorageType>& outPoints,
DeviceAdapterTag) const
{
if (CartesianToSpherical)
{
vtkm::worklet::DispatcherMapField<detail::CarToSphere<T>, DeviceAdapterTag> dispatcher;
dispatcher.Invoke(inPoints, outPoints);
}
else
{
vtkm::worklet::DispatcherMapField<detail::SphereToCar<T>, DeviceAdapterTag> dispatcher;
dispatcher.Invoke(inPoints, outPoints);
}
}
template <typename CoordsStorageType, typename DeviceAdapterTag>
void Run(const vtkm::cont::CoordinateSystem& inPoints,
vtkm::cont::ArrayHandle<vtkm::Vec<T, 3>, CoordsStorageType>& outPoints,
DeviceAdapterTag) const
{
if (CartesianToSpherical)
{
vtkm::worklet::DispatcherMapField<detail::CarToSphere<T>, DeviceAdapterTag> dispatcher;
dispatcher.Invoke(inPoints, outPoints);
}
else
{
vtkm::worklet::DispatcherMapField<detail::SphereToCar<T>, DeviceAdapterTag> dispatcher;
dispatcher.Invoke(inPoints, outPoints);
}
}
private:
bool CartesianToSpherical;
};
}
} // namespace vtkm::worklet
#endif // vtk_m_worklet_CoordinateSystemTransform_h

@ -28,6 +28,7 @@ set(unit_tests
UnitTestCellMeasure.cxx
UnitTestClipping.cxx
UnitTestContourTreeUniform.cxx
UnitTestCoordinateSystemTransform.cxx
UnitTestCosmoTools.cxx
UnitTestCrossProduct.cxx
UnitTestDotProduct.cxx

@ -0,0 +1,216 @@
//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#include <vtkm/cont/CellSetExplicit.h>
#include <vtkm/cont/DataSet.h>
#include <vtkm/cont/testing/Testing.h>
#include <vtkm/worklet/CoordinateSystemTransform.h>
#include <vtkm/worklet/DispatcherMapField.h>
#include <random>
#include <vector>
namespace
{
std::mt19937 randGenerator;
enum CoordinateType
{
CART = 0,
CYL,
SPH
};
vtkm::cont::DataSet MakeTestDataSet(const CoordinateType& cType)
{
vtkm::cont::DataSet dataSet;
std::vector<vtkm::Vec<vtkm::FloatDefault, 3>> coordinates;
const vtkm::Id dim = 5;
if (cType == CART)
{
for (vtkm::Id j = 0; j < dim; ++j)
{
vtkm::FloatDefault z =
static_cast<vtkm::FloatDefault>(j) / static_cast<vtkm::FloatDefault>(dim - 1);
for (vtkm::Id i = 0; i < dim; ++i)
{
vtkm::FloatDefault x =
static_cast<vtkm::FloatDefault>(i) / static_cast<vtkm::FloatDefault>(dim - 1);
vtkm::FloatDefault y = (x * x + z * z) / 2.0f;
coordinates.push_back(vtkm::make_Vec(x + 0, y + 0, z + 0));
}
}
}
else if (cType == CYL)
{
vtkm::FloatDefault R = 1.0f;
for (vtkm::Id j = 0; j < dim; j++)
{
vtkm::FloatDefault Z =
static_cast<vtkm::FloatDefault>(j) / static_cast<vtkm::FloatDefault>(dim - 1);
for (vtkm::Id i = 0; i < dim; i++)
{
vtkm::FloatDefault Theta = vtkm::TwoPif() *
(static_cast<vtkm::FloatDefault>(i) / static_cast<vtkm::FloatDefault>(dim - 1));
coordinates.push_back(vtkm::make_Vec(R, Theta, Z));
}
}
}
else if (cType == SPH)
{
//Spherical coordinates have some degenerate cases, so provide some good cases.
vtkm::FloatDefault R = 1.0f;
vtkm::FloatDefault eps = vtkm::Epsilon<float>();
std::vector<vtkm::FloatDefault> Thetas = {
eps, vtkm::Pif() / 4, vtkm::Pif() / 3, vtkm::Pif() / 2, vtkm::Pif() - eps
};
std::vector<vtkm::FloatDefault> Phis = {
eps, vtkm::TwoPif() / 4, vtkm::TwoPif() / 3, vtkm::TwoPif() / 2, vtkm::TwoPif() - eps
};
for (std::size_t i = 0; i < Thetas.size(); i++)
for (std::size_t j = 0; j < Phis.size(); j++)
coordinates.push_back(vtkm::make_Vec(R, Thetas[i], Phis[j]));
}
vtkm::Id numCells = (dim - 1) * (dim - 1);
dataSet.AddCoordinateSystem(
vtkm::cont::make_CoordinateSystem("coordinates", coordinates, vtkm::CopyFlag::On));
vtkm::cont::CellSetExplicit<> cellSet("cells");
cellSet.PrepareToAddCells(numCells, numCells * 4);
for (vtkm::Id j = 0; j < dim - 1; ++j)
{
for (vtkm::Id i = 0; i < dim - 1; ++i)
{
cellSet.AddCell(vtkm::CELL_SHAPE_QUAD,
4,
vtkm::make_Vec<vtkm::Id>(
j * dim + i, j * dim + i + 1, (j + 1) * dim + i + 1, (j + 1) * dim + i));
}
}
cellSet.CompleteAddingCells(vtkm::Id(coordinates.size()));
dataSet.AddCellSet(cellSet);
return dataSet;
}
void ValidateCoordTransform(
const vtkm::cont::CoordinateSystem& coords,
const vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>>& transform,
const vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>>& doubleTransform,
const std::vector<bool>& isAngle)
{
auto points = coords.GetData();
VTKM_TEST_ASSERT(points.GetNumberOfValues() == transform.GetNumberOfValues() &&
points.GetNumberOfValues() == doubleTransform.GetNumberOfValues(),
"Incorrect number of points in point transform");
//The double transform should produce the same result.
auto pointsPortal = points.GetPortalConstControl();
auto resultsPortal = doubleTransform.GetPortalConstControl();
for (vtkm::Id i = 0; i < points.GetNumberOfValues(); i++)
{
vtkm::Vec<vtkm::FloatDefault, 3> p = pointsPortal.Get(i);
vtkm::Vec<vtkm::FloatDefault, 3> r = resultsPortal.Get(i);
bool isEqual = true;
for (vtkm::IdComponent j = 0; j < 3; j++)
{
if (isAngle[static_cast<std::size_t>(j)])
isEqual &= (test_equal(p[j], r[j]) || test_equal(p[j] + vtkm::TwoPif(), r[j]) ||
test_equal(p[j], r[j] + vtkm::TwoPif()));
else
isEqual &= test_equal(p[j], r[j]);
}
VTKM_TEST_ASSERT(isEqual, "Wrong result for PointTransform worklet");
}
}
}
void TestCoordinateSystemTransform()
{
std::cout << "Testing CylindricalCoordinateTransform Worklet" << std::endl;
using DeviceAdapter = VTKM_DEFAULT_DEVICE_ADAPTER_TAG;
//Test cartesian to cyl
vtkm::cont::DataSet dsCart = MakeTestDataSet(CART);
vtkm::worklet::CylindricalCoordinateTransform<vtkm::FloatDefault> cylTrn;
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>> carToCylPts;
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>> revResult;
cylTrn.SetCartesianToCylindrical();
cylTrn.Run(dsCart.GetCoordinateSystem(), carToCylPts, DeviceAdapter());
cylTrn.SetCylindricalToCartesian();
cylTrn.Run(carToCylPts, revResult, DeviceAdapter());
ValidateCoordTransform(
dsCart.GetCoordinateSystem(), carToCylPts, revResult, { false, false, false });
//Test cylindrical to cartesian
vtkm::cont::DataSet dsCyl = MakeTestDataSet(CYL);
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>> cylToCarPts;
cylTrn.SetCylindricalToCartesian();
cylTrn.Run(dsCyl.GetCoordinateSystem(), cylToCarPts, DeviceAdapter());
cylTrn.SetCartesianToCylindrical();
cylTrn.Run(cylToCarPts, revResult, DeviceAdapter());
ValidateCoordTransform(
dsCyl.GetCoordinateSystem(), cylToCarPts, revResult, { false, true, false });
//Spherical transform
//Test cartesian to sph
vtkm::worklet::SphericalCoordinateTransform<vtkm::FloatDefault> sphTrn;
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>> carToSphPts;
sphTrn.SetCartesianToSpherical();
sphTrn.Run(dsCart.GetCoordinateSystem(), carToSphPts, DeviceAdapter());
sphTrn.SetSphericalToCartesian();
sphTrn.Run(carToSphPts, revResult, DeviceAdapter());
ValidateCoordTransform(
dsCart.GetCoordinateSystem(), carToSphPts, revResult, { false, true, true });
//Test spherical to cartesian
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::FloatDefault, 3>> sphToCarPts;
vtkm::cont::DataSet dsSph = MakeTestDataSet(SPH);
sphTrn.SetSphericalToCartesian();
sphTrn.Run(dsSph.GetCoordinateSystem(), sphToCarPts, DeviceAdapter());
sphTrn.SetCartesianToSpherical();
sphTrn.Run(sphToCarPts, revResult, DeviceAdapter());
ValidateCoordTransform(
dsSph.GetCoordinateSystem(), sphToCarPts, revResult, { false, true, true });
sphTrn.SetSphericalToCartesian();
sphTrn.Run(dsSph.GetCoordinateSystem(), sphToCarPts, DeviceAdapter());
sphTrn.SetCartesianToSpherical();
sphTrn.Run(sphToCarPts, revResult, DeviceAdapter());
ValidateCoordTransform(
dsSph.GetCoordinateSystem(), sphToCarPts, revResult, { false, true, true });
}
int UnitTestCoordinateSystemTransform(int, char* [])
{
return vtkm::cont::testing::Testing::Run(TestCoordinateSystemTransform);
}