consolidate two particle density filters

This commit is contained in:
Li-Ta Lo 2021-03-18 16:44:23 -06:00
parent 4a22f54bdf
commit 6796b1a453
6 changed files with 163 additions and 104 deletions

@ -0,0 +1,113 @@
//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
//
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//============================================================================
#ifndef vtk_m_filter_particle_density_base_h
#define vtk_m_filter_particle_density_base_h
#include <vtkm/filter/FilterField.h>
#include <vtkm/worklet/WorkletMapField.h>
namespace vtkm
{
namespace filter
{
// We only need the CoordinateSystem and scalar fields of the input dataset thus a FilterField
template <typename Derived>
class ParticleDensityBase : public vtkm::filter::FilterField<Derived>
{
public:
// deposit scalar field associated with particles, e.g. mass/charge to mesh cells
using SupportedTypes = vtkm::TypeListFieldScalar;
protected:
ParticleDensityBase(const vtkm::Id3& dimension,
const vtkm::Vec3f& origin,
const vtkm::Vec3f& spacing)
: Dimension(dimension)
, Origin(origin)
, Spacing(spacing)
, ComputeNumberDensity(false)
, DivideByVolume(true)
{
}
ParticleDensityBase(const vtkm::Id3& dimension, const vtkm::Bounds& bounds)
: Dimension(dimension)
, Origin({ static_cast<vtkm::FloatDefault>(bounds.X.Min),
static_cast<vtkm::FloatDefault>(bounds.Y.Min),
static_cast<vtkm::FloatDefault>(bounds.Z.Min) })
, Spacing(vtkm::Vec3f{ static_cast<vtkm::FloatDefault>(bounds.X.Length()),
static_cast<vtkm::FloatDefault>(bounds.Y.Length()),
static_cast<vtkm::FloatDefault>(bounds.Z.Length()) } /
Dimension)
, ComputeNumberDensity(false)
, DivideByVolume(true)
{
}
public:
template <typename DerivedPolicy>
VTKM_CONT vtkm::cont::DataSet PrepareForExecution(const vtkm::cont::DataSet& input,
vtkm::filter::PolicyBase<DerivedPolicy> policy)
{
if (this->ComputeNumberDensity)
{
return static_cast<Derived*>(this)->DoExecute(
input,
vtkm::cont::make_ArrayHandleConstant(vtkm::FloatDefault{ 1 }, input.GetNumberOfPoints()),
vtkm::filter::FieldMetadata{}, // Ignored
policy);
}
else
{
return this->FilterField<Derived>::PrepareForExecution(input, policy);
}
}
VTKM_CONT void SetComputeNumberDensity(bool yes) { this->ComputeNumberDensity = yes; }
VTKM_CONT bool GetComputeNumberDensity() const { return this->ComputeNumberDensity; }
VTKM_CONT void SetDivideByVolume(bool yes) { this->DivideByVolume = yes; }
VTKM_CONT bool GetDivideByVolume() const { return this->DivideByVolume; }
protected:
vtkm::Id3 Dimension; // Cell dimension
vtkm::Vec3f Origin;
vtkm::Vec3f Spacing;
bool ComputeNumberDensity;
bool DivideByVolume;
class DivideByVolumeWorklet : public vtkm::worklet::WorkletMapField
{
public:
using ControlSignature = void(FieldInOut field);
using ExecutionSignature = void(_1);
VTKM_EXEC_CONT
explicit DivideByVolumeWorklet(vtkm::Float64 volume)
: Volume(volume)
{
}
template <typename T>
VTKM_EXEC void operator()(T& value) const
{
value = static_cast<T>(value / Volume);
}
private:
vtkm::Float64 Volume;
}; // class DivideByVolumeWorklet
};
}
}
#endif //vtk_m_filter_particle_density_base_h

@ -11,37 +11,44 @@
#ifndef vtk_m_filter_particle_density_cic_h
#define vtk_m_filter_particle_density_cic_h
#include <vtkm/filter/FilterField.h>
#include <vtkm/filter/ParticleDensityBase.h>
namespace vtkm
{
namespace filter
{
/// \brief Estimate the density of particles using the Cloud-in-Cell method
// We only need the CoordinateSystem of the input dataset thus a FilterField
class ParticleDensityCloudInCell : public vtkm::filter::FilterField<ParticleDensityCloudInCell>
/// This filter treats the CoordinateSystem of a DataSet as positions of particles.
/// The particles are infinitesimal in size with finite mass (or other scalar attributes
/// such as charge). The filter estimates density by imposing a regular grid as
/// specified in the constructor. It spread the mass of each particle to its 8 nearest
/// neighboring grid points and summing the contribution of particles for each point
/// in the grid.
/// The mass of particles is established by setting the active field (using SetActiveField).
/// Note that the "mass" can actually be another quantity. For example, you could use
/// electrical charge in place of mass to compute the charge density.
/// Once the sum of the mass is computed for each grid point, the mass is divided by the
/// volume of the cell. Thus, the density will be computed as the units of the mass field
/// per the cubic units of the coordinate system. If you just want a sum of the mass in each
/// cell, turn off the DivideByVolumeWorklet feature of this filter.
/// In addition, you can also simply count the number of particles in each cell by calling
/// SetComputeNumberDensity(true).
class ParticleDensityCloudInCell : public ParticleDensityBase<ParticleDensityCloudInCell>
{
public:
// ParticleDensity only support turning 2D/3D particle positions into density
// FIXME: 2D?
//using SupportedTypes = vtkm::TypeListFieldVec3;
using SupportedTypes = vtkm::TypeListFieldScalar;
using Superclass = ParticleDensityBase<ParticleDensityCloudInCell>;
ParticleDensityCloudInCell(const vtkm::Id3& dimension,
const vtkm::Vec3f& origin,
const vtkm::Vec3f& spacing);
ParticleDensityCloudInCell(const Id3& dimension, const vtkm::Bounds& bounds);
template <typename T, typename StorageType, typename Policy>
VTKM_CONT vtkm::cont::DataSet DoExecute(const vtkm::cont::DataSet& input,
const vtkm::cont::ArrayHandle<T, StorageType>& field,
const vtkm::filter::FieldMetadata& fieldMeta,
vtkm::filter::PolicyBase<Policy> policy);
private:
vtkm::Id3 Dimension; // Point dimension
vtkm::Vec3f Origin;
vtkm::Vec3f Spacing;
};
} // filter
} // vtkm

@ -80,12 +80,15 @@ namespace filter
inline VTKM_CONT ParticleDensityCloudInCell::ParticleDensityCloudInCell(const vtkm::Id3& dimension,
const vtkm::Vec3f& origin,
const vtkm::Vec3f& spacing)
: Dimension(dimension)
, Origin(origin)
, Spacing(spacing)
: Superclass(dimension, origin, spacing)
{
}
inline VTKM_CONT ParticleDensityCloudInCell::ParticleDensityCloudInCell(const Id3& dimension,
const vtkm::Bounds& bounds)
: Superclass(dimension, bounds)
{
}
template <typename T, typename StorageType, typename Policy>
inline VTKM_CONT vtkm::cont::DataSet ParticleDensityCloudInCell::DoExecute(
@ -113,6 +116,12 @@ inline VTKM_CONT vtkm::cont::DataSet ParticleDensityCloudInCell::DoExecute(
this->Invoke(vtkm::worklet::CICWorklet{}, coords, field, locator, uniform.GetCellSet(), density);
if (DivideByVolume)
{
auto volume = this->Spacing[0] * this->Spacing[1] * this->Spacing[2];
this->Invoke(DivideByVolumeWorklet{ volume }, density);
}
uniform.AddField(vtkm::cont::make_FieldPoint("density", density));
return uniform;

@ -11,7 +11,7 @@
#ifndef vtk_m_filter_particle_density_ngp_h
#define vtk_m_filter_particle_density_ngp_h
#include <vtkm/filter/FilterField.h>
#include <vtkm/filter/ParticleDensityBase.h>
namespace vtkm
{
@ -29,17 +29,13 @@ namespace filter
/// Once the sum of the mass is computed for each grid cell, the mass is divided by the
/// volume of the cell. Thus, the density will be computed as the units of the mass field
/// per the cubic units of the coordinate system. If you just want a sum of the mass in each
/// cell, turn off the DivideByVolume feature of this filter.
/// cell, turn off the DivideByVolumeWorklet feature of this filter.
/// In addition, you can also simply count the number of particles in each cell by calling
/// SetComputeNumberDensity(true).
// We only need the CoordinateSystem and scalar fields of the input dataset thus a FilterField
class ParticleDensityNearestGridPoint
: public vtkm::filter::FilterField<ParticleDensityNearestGridPoint>
class ParticleDensityNearestGridPoint : public ParticleDensityBase<ParticleDensityNearestGridPoint>
{
public:
// deposit scalar field associated with particles, e.g. mass/charge to mesh cells
using SupportedTypes = vtkm::TypeListFieldScalar;
using Superclass = ParticleDensityBase<ParticleDensityNearestGridPoint>;
ParticleDensityNearestGridPoint(const vtkm::Id3& dimension,
const vtkm::Vec3f& origin,
@ -47,30 +43,11 @@ public:
ParticleDensityNearestGridPoint(const vtkm::Id3& dimension, const vtkm::Bounds& bounds);
template <typename DerivedPolicy>
VTKM_CONT vtkm::cont::DataSet PrepareForExecution(const vtkm::cont::DataSet& input,
vtkm::filter::PolicyBase<DerivedPolicy> policy);
template <typename T, typename StorageType, typename Policy>
VTKM_CONT vtkm::cont::DataSet DoExecute(const vtkm::cont::DataSet& input,
const vtkm::cont::ArrayHandle<T, StorageType>& field,
const vtkm::filter::FieldMetadata& fieldMeta,
vtkm::filter::PolicyBase<Policy> policy);
VTKM_CONT void SetComputeNumberDensity(bool yes) { this->ComputeNumberDensity = yes; }
VTKM_CONT bool GetComputeNumberDensity() const { return this->ComputeNumberDensity; }
VTKM_CONT void SetDivideByVolume(bool yes) { this->DivideByVolume = yes; }
VTKM_CONT bool GetDivideByVolume() const { return this->DivideByVolume; }
private:
vtkm::Id3 Dimension; // Cell dimension
vtkm::Vec3f Origin;
vtkm::Vec3f Spacing;
bool ComputeNumberDensity;
bool DivideByVolume;
};
}
}

@ -50,34 +50,9 @@ public:
// We simply ignore that particular particle when it is not in the mesh.
}
}; //NGPWorklet
namespace detail
{
class DividByVolume : public vtkm::worklet::WorkletMapField
{
public:
using ControlSignature = void(FieldInOut field);
using ExecutionSignature = void(_1);
VTKM_EXEC_CONT
explicit DividByVolume(vtkm::Float64 volume)
: Volume(volume)
{
}
template <typename T>
VTKM_EXEC void operator()(T& value) const
{
value = static_cast<T>(value / Volume);
}
private:
vtkm::Float64 Volume;
};
} //detail
} //worklet
} //vtkm
namespace vtkm
{
namespace filter
@ -86,49 +61,17 @@ inline VTKM_CONT ParticleDensityNearestGridPoint::ParticleDensityNearestGridPoin
const vtkm::Id3& dimension,
const vtkm::Vec3f& origin,
const vtkm::Vec3f& spacing)
: Dimension(dimension)
, Origin(origin)
, Spacing(spacing)
, ComputeNumberDensity(false)
, DivideByVolume(true)
: Superclass(dimension, origin, spacing)
{
}
inline VTKM_CONT ParticleDensityNearestGridPoint::ParticleDensityNearestGridPoint(
const Id3& dimension,
const vtkm::Bounds& bounds)
: Dimension(dimension)
, Origin({ static_cast<vtkm::FloatDefault>(bounds.X.Min),
static_cast<vtkm::FloatDefault>(bounds.Y.Min),
static_cast<vtkm::FloatDefault>(bounds.Z.Min) })
, Spacing(vtkm::Vec3f{ static_cast<vtkm::FloatDefault>(bounds.X.Length()),
static_cast<vtkm::FloatDefault>(bounds.Y.Length()),
static_cast<vtkm::FloatDefault>(bounds.Z.Length()) } /
Dimension)
, ComputeNumberDensity(false)
, DivideByVolume(true)
: Superclass(dimension, bounds)
{
}
template <typename DerivedPolicy>
VTKM_CONT vtkm::cont::DataSet ParticleDensityNearestGridPoint::PrepareForExecution(
const vtkm::cont::DataSet& input,
vtkm::filter::PolicyBase<DerivedPolicy> policy)
{
if (this->ComputeNumberDensity)
{
return this->DoExecute(
input,
vtkm::cont::make_ArrayHandleConstant(vtkm::FloatDefault{ 1 }, input.GetNumberOfPoints()),
vtkm::filter::FieldMetadata{}, // Ignored
policy);
}
else
{
return this->FilterField::PrepareForExecution(input, policy);
}
}
template <typename T, typename StorageType, typename Policy>
inline VTKM_CONT vtkm::cont::DataSet ParticleDensityNearestGridPoint::DoExecute(
const vtkm::cont::DataSet& dataSet,
@ -166,7 +109,7 @@ inline VTKM_CONT vtkm::cont::DataSet ParticleDensityNearestGridPoint::DoExecute(
if (DivideByVolume)
{
auto volume = this->Spacing[0] * this->Spacing[1] * this->Spacing[2];
this->Invoke(vtkm::worklet::detail::DividByVolume{ volume }, density);
this->Invoke(DivideByVolumeWorklet{ volume }, density);
}
uniform.AddField(vtkm::cont::make_FieldCell("density", density));

@ -103,7 +103,17 @@ void TestCIC()
auto mass_result = vtkm::worklet::DescriptiveStatistics::Run(mass);
auto density_result = vtkm::worklet::DescriptiveStatistics::Run(field);
// Unfortunately, floating point atomics suffer from precision error more than everything else.
VTKM_TEST_ASSERT(test_equal(density_result.Sum(), mass_result.Sum(), 10));
VTKM_TEST_ASSERT(test_equal(density_result.Sum(), mass_result.Sum() * 27.0, 10));
filter.SetComputeNumberDensity(true);
filter.SetDivideByVolume(false);
auto counts = filter.Execute(dataSet);
vtkm::cont::ArrayHandle<vtkm::FloatDefault> field1;
counts.GetPointField("density").GetData().AsArrayHandle<vtkm::FloatDefault>(field1);
auto counts_result = vtkm::worklet::DescriptiveStatistics::Run(field1);
VTKM_TEST_ASSERT(test_equal(counts_result.Sum(), mass_result.N(), 0.1));
}
void TestParticleDensity()