Rename boundary classes

Did a bit of renaming of the support classes used for
WorkletPointNeighborhood. First, the OnBoundary tag is changed to
Boundary to match other tags and reflect some changes in the resulting
methods. Also moved the BoundaryState and Neighborhood classes from
vtkm::exec::arg to vtkm::exec to be more accessible. Finally, the
Neighborhood class name was changed to FieldNeighborhood to be more
specific on what role this class plays with neighborhood.
This commit is contained in:
Kenneth Moreland 2018-12-03 12:44:17 -07:00
parent e008aff27b
commit 82536092cc
11 changed files with 331 additions and 244 deletions

188
vtkm/exec/BoundaryState.h Normal file

@ -0,0 +1,188 @@
//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2018 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2018 UT-Battelle, LLC.
// Copyright 2018 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#ifndef vtk_m_exec_BoundaryState_h
#define vtk_m_exec_BoundaryState_h
#include <vtkm/Math.h>
namespace vtkm
{
namespace exec
{
/// \brief Provides a neighborhood's placement with respect to the mesh's boundary.
///
/// \c BoundaryState provides functionality for \c WorkletPointNeighborhood algorithms and Fetch's
/// to determine if they are operating on a point near the boundary. It allows you to query about
/// overlaps of the neighborhood and the mesh boundary. It also helps convert local neighborhood
/// ids to the corresponding location in the mesh.
///
/// This class is typically constructed using the \c Boundary tag in an \c ExecutionSignature.
/// There is little reason to construct this in user code.
///
struct BoundaryState
{
VTKM_EXEC
BoundaryState(const vtkm::Id3& ijk, const vtkm::Id3& pdims)
: IJK(ijk)
, PointDimensions(pdims)
{
}
//@{
/// Returns true if a neighborhood of the given radius is contained within the bounds of the cell
/// set in the X, Y, or Z direction. Returns false if the neighborhood extends ouside of the
/// boundary of the data in the X, Y, or Z direction.
///
/// The radius defines the size of the neighborhood in terms of how far away it extends from the
/// center. So if there is a radius of 1, the neighborhood extends 1 unit away from the center in
/// each direction and is 3x3x3. If there is a radius of 2, the neighborhood extends 2 units for
/// a size of 5x5x5.
///
VTKM_EXEC bool InXBoundary(vtkm::IdComponent radius) const
{
return (((this->IJK[0] - radius) >= 0) && ((this->IJK[0] + radius) < this->PointDimensions[0]));
}
VTKM_EXEC bool InYBoundary(vtkm::IdComponent radius) const
{
return (((this->IJK[1] - radius) >= 0) && ((this->IJK[1] + radius) < this->PointDimensions[1]));
}
VTKM_EXEC bool InZBoundary(vtkm::IdComponent radius) const
{
return (((this->IJK[2] - radius) >= 0) && ((this->IJK[2] + radius) < this->PointDimensions[2]));
}
//@}
/// Returns true if a neighborhood of the given radius is contained within the bounds
/// of the cell set. Returns false if the neighborhood extends ouside of the boundary of the
/// data.
///
/// The radius defines the size of the neighborhood in terms of how far away it extends from the
/// center. So if there is a radius of 1, the neighborhood extends 1 unit away from the center in
/// each direction and is 3x3x3. If there is a radius of 2, the neighborhood extends 2 units for
/// a size of 5x5x5.
///
VTKM_EXEC bool InBoundary(vtkm::IdComponent radius) const
{
return this->InXBoundary(radius) && this->InYBoundary(radius) && this->InZBoundary(radius);
}
/// Returns the minimum neighborhood indices that are within the bounds of the data.
///
VTKM_EXEC vtkm::Vec<vtkm::IdComponent, 3> MinNeighborIndices(vtkm::IdComponent radius) const
{
vtkm::Vec<vtkm::IdComponent, 3> minIndices;
for (vtkm::IdComponent component = 0; component < 3; ++component)
{
if (this->IJK[component] >= radius)
{
minIndices[component] = -radius;
}
else
{
minIndices[component] = static_cast<vtkm::IdComponent>(-this->IJK[component]);
}
}
return minIndices;
}
/// Returns the minimum neighborhood indices that are within the bounds of the data.
///
VTKM_EXEC vtkm::Vec<vtkm::IdComponent, 3> MaxNeighborIndices(vtkm::IdComponent radius) const
{
vtkm::Vec<vtkm::IdComponent, 3> maxIndices;
for (vtkm::IdComponent component = 0; component < 3; ++component)
{
if ((this->PointDimensions[component] - this->IJK[component] - 1) >= radius)
{
maxIndices[component] = radius;
}
else
{
maxIndices[component] = static_cast<vtkm::IdComponent>(this->PointDimensions[component] -
this->IJK[component] - 1);
}
}
return maxIndices;
}
//todo: This needs to work with BoundaryConstantValue
//todo: This needs to work with BoundaryPeroidic
//@{
/// Takes a local neighborhood index (in the ranges of -neighborhood size to neighborhood size)
/// and returns the ijk of the equivalent point in the full data set. If the given value is out
/// of range, the value is clamped to the nearest boundary. For example, if given a neighbor
/// index that is past the minimum x range of the data, the index at the minimum x boundary is
/// returned.
///
VTKM_EXEC vtkm::Id3 NeighborIndexToFullIndexClamp(
const vtkm::Vec<vtkm::IdComponent, 3>& neighbor) const
{
vtkm::Id3 fullIndex = this->IJK + neighbor;
return vtkm::Max(vtkm::Id3(0), vtkm::Min(this->PointDimensions - vtkm::Id3(1), fullIndex));
}
VTKM_EXEC vtkm::Id3 NeighborIndexToFullIndexClamp(vtkm::IdComponent neighborI,
vtkm::IdComponent neighborJ,
vtkm::IdComponent neighborK) const
{
return this->NeighborIndexToFullIndexClamp(vtkm::make_Vec(neighborI, neighborJ, neighborK));
}
//@}
//todo: This needs to work with BoundaryConstantValue
//todo: This needs to work with BoundaryPeroidic
//@{
/// Takes a local neighborhood index (in the ranges of -neighborhood size to neighborhood size)
/// and returns the flat index of the equivalent point in the full data set. If the given value
/// is out of range, the value is clamped to the nearest boundary. For example, if given a
/// neighbor index that is past the minimum x range of the data, the index at the minimum x
/// boundary is returned.
///
VTKM_EXEC vtkm::Id NeighborIndexToFlatIndexClamp(
const vtkm::Vec<vtkm::IdComponent, 3>& neighbor) const
{
vtkm::Id3 full = this->NeighborIndexToFullIndexClamp(neighbor);
return (full[2] * this->PointDimensions[1] + full[1]) * this->PointDimensions[0] + full[0];
}
VTKM_EXEC vtkm::Id NeighborIndexToFlatIndexClamp(vtkm::IdComponent neighborI,
vtkm::IdComponent neighborJ,
vtkm::IdComponent neighborK) const
{
return this->NeighborIndexToFlatIndexClamp(vtkm::make_Vec(neighborI, neighborJ, neighborK));
}
//@}
vtkm::Id3 IJK;
vtkm::Id3 PointDimensions;
};
}
} // namespace vtkm::exec
#endif //vtk_m_exec_BoundaryState_h

@ -20,6 +20,7 @@
set(headers
BoundingIntervalHierarchyExec.h
BoundaryState.h
AtomicArrayExecutionObject.h
CellDerivative.h
CellEdge.h
@ -33,6 +34,7 @@ set(headers
ConnectivityPermuted.h
ConnectivityStructured.h
ExecutionWholeArray.h
FieldNeighborhood.h
FunctorBase.h
Jacobian.h
ParametricCoordinates.h

@ -0,0 +1,107 @@
//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2018 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2018 UT-Battelle, LLC.
// Copyright 2018 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#ifndef vtk_m_exec_FieldNeighborhood_h
#define vtk_m_exec_FieldNeighborhood_h
#include <vtkm/exec/BoundaryState.h>
#include <vtkm/internal/ArrayPortalUniformPointCoordinates.h>
namespace vtkm
{
namespace exec
{
/// \brief Retrieves field values from a neighborhood.
///
/// \c FieldNeighborhood manages the retrieval of field values within the neighborhood of a
/// \c WorkletPointNeighborhood worklet. The \c Get methods take ijk indices relative to the
/// neighborhood (with 0, 0, 0 being the element visted) and return the field value at that part of
/// the neighborhood. If the requested neighborhood is outside the boundary, a different value will
/// be returned determined by the boundary behavior. A \c BoundaryState object can be used to
/// determine if the neighborhood extends beyond the boundary of the mesh.
///
/// This class is typically constructued using the \c FieldInNeighborhood tag in an
/// \c ExecutionSignature. There is little reason to construct this in user code.
///
/// \c FieldNeighborhood is templated on the array portal from which field values are retrieved.
///
template <typename FieldPortalType>
struct FieldNeighborhood
{
VTKM_EXEC
FieldNeighborhood(const FieldPortalType& portal, const vtkm::exec::BoundaryState& boundary)
: Boundary(&boundary)
, Portal(portal)
{
}
using ValueType = typename FieldPortalType::ValueType;
VTKM_EXEC
ValueType Get(vtkm::IdComponent i, vtkm::IdComponent j, vtkm::IdComponent k) const
{
return Portal.Get(this->Boundary->NeighborIndexToFlatIndexClamp(i, j, k));
}
VTKM_EXEC
ValueType Get(const vtkm::Id3& ijk) const
{
return Portal.Get(this->Boundary->NeighborIndexToFlatIndexClamp(ijk));
}
vtkm::exec::BoundaryState const* const Boundary;
FieldPortalType Portal;
};
/// \brief Specialization of Neighborhood for ArrayPortalUniformPointCoordinates
/// We can use fast paths inside ArrayPortalUniformPointCoordinates to allow
/// for very fast computation of the coordinates reachable by the neighborhood
template <>
struct FieldNeighborhood<vtkm::internal::ArrayPortalUniformPointCoordinates>
{
VTKM_EXEC
FieldNeighborhood(const vtkm::internal::ArrayPortalUniformPointCoordinates& portal,
const vtkm::exec::BoundaryState& boundary)
: Boundary(&boundary)
, Portal(portal)
{
}
using ValueType = vtkm::internal::ArrayPortalUniformPointCoordinates::ValueType;
VTKM_EXEC
ValueType Get(vtkm::IdComponent i, vtkm::IdComponent j, vtkm::IdComponent k) const
{
return Portal.Get(this->Boundary->NeighborIndexToFullIndexClamp(i, j, k));
}
VTKM_EXEC
ValueType Get(const vtkm::Vec<vtkm::IdComponent, 3>& ijk) const
{
return Portal.Get(this->Boundary->NeighborIndexToFullIndexClamp(ijk));
}
vtkm::exec::BoundaryState const* const Boundary;
vtkm::internal::ArrayPortalUniformPointCoordinates Portal;
};
}
} // namespace vtkm::exec
#endif //vtk_m_exec_FieldNeighborhood_h

@ -33,31 +33,31 @@ namespace arg
/// \brief Aspect tag to use for getting if a point is a boundary point.
///
/// The \c AspectTagOnBoundary aspect tag causes the \c Fetch class to obtain
/// The \c AspectTagBoundary aspect tag causes the \c Fetch class to obtain
/// if the point is on a boundary.
///
struct AspectTagOnBoundary
struct AspectTagBoundary
{
};
/// \brief The \c ExecutionSignature tag to get if executing on a boundary element
///
struct OnBoundary : vtkm::exec::arg::ExecutionSignatureTagBase
struct Boundary : vtkm::exec::arg::ExecutionSignatureTagBase
{
static constexpr vtkm::IdComponent INDEX = 1;
using AspectTag = vtkm::exec::arg::AspectTagOnBoundary;
using AspectTag = vtkm::exec::arg::AspectTagBoundary;
};
template <typename FetchTag, typename ExecObjectType>
struct Fetch<FetchTag,
vtkm::exec::arg::AspectTagOnBoundary,
vtkm::exec::arg::AspectTagBoundary,
vtkm::exec::arg::ThreadIndicesPointNeighborhood,
ExecObjectType>
{
using ThreadIndicesType = vtkm::exec::arg::ThreadIndicesPointNeighborhood;
using ValueType = vtkm::exec::arg::BoundaryState;
using ValueType = vtkm::exec::BoundaryState;
VTKM_SUPPRESS_EXEC_WARNINGS
VTKM_EXEC

@ -21,6 +21,7 @@
set(headers
AspectTagDefault.h
BasicArg.h
Boundary.h
CellShape.h
ExecutionSignatureTagBase.h
Fetch.h
@ -36,7 +37,6 @@ set(headers
FromCount.h
FromIndices.h
InputIndex.h
OnBoundary.h
OutputIndex.h
ThreadIndices.h
ThreadIndicesBasic.h

@ -20,10 +20,10 @@
#ifndef vtk_m_exec_arg_FetchTagArrayNeighborhoodIn_h
#define vtk_m_exec_arg_FetchTagArrayNeighborhoodIn_h
#include <vtkm/exec/FieldNeighborhood.h>
#include <vtkm/exec/arg/AspectTagDefault.h>
#include <vtkm/exec/arg/Fetch.h>
#include <vtkm/exec/arg/ThreadIndicesPointNeighborhood.h>
#include <vtkm/internal/ArrayPortalUniformPointCoordinates.h>
namespace vtkm
{
@ -41,66 +41,6 @@ struct FetchTagArrayNeighborhoodIn
{
};
template <typename ExecObjectType>
struct Neighborhood
{
VTKM_EXEC
Neighborhood(const ExecObjectType& portal, const vtkm::exec::arg::BoundaryState& boundary)
: Boundary(&boundary)
, Portal(portal)
{
}
using ValueType = typename ExecObjectType::ValueType;
VTKM_EXEC
ValueType Get(vtkm::IdComponent i, vtkm::IdComponent j, vtkm::IdComponent k) const
{
return Portal.Get(this->Boundary->NeighborIndexToFlatIndexClamp(i, j, k));
}
VTKM_EXEC
ValueType Get(const vtkm::Id3& ijk) const
{
return Portal.Get(this->Boundary->NeighborIndexToFlatIndexClamp(ijk));
}
vtkm::exec::arg::BoundaryState const* const Boundary;
ExecObjectType Portal;
};
/// \brief Specialization of Neighborhood for ArrayPortalUniformPointCoordinates
/// We can use fast paths inside ArrayPortalUniformPointCoordinates to allow
/// for very fast computation of the coordinates reachable by the neighborhood
template <>
struct Neighborhood<vtkm::internal::ArrayPortalUniformPointCoordinates>
{
VTKM_EXEC
Neighborhood(const vtkm::internal::ArrayPortalUniformPointCoordinates& portal,
const vtkm::exec::arg::BoundaryState& boundary)
: Boundary(&boundary)
, Portal(portal)
{
}
using ValueType = vtkm::internal::ArrayPortalUniformPointCoordinates::ValueType;
VTKM_EXEC
ValueType Get(vtkm::IdComponent i, vtkm::IdComponent j, vtkm::IdComponent k) const
{
return Portal.Get(this->Boundary->NeighborIndexToFullIndexClamp(i, j, k));
}
VTKM_EXEC
ValueType Get(const vtkm::Vec<vtkm::IdComponent, 3>& ijk) const
{
return Portal.Get(this->Boundary->NeighborIndexToFullIndexClamp(ijk));
}
vtkm::exec::arg::BoundaryState const* const Boundary;
vtkm::internal::ArrayPortalUniformPointCoordinates Portal;
};
template <typename ExecObjectType>
struct Fetch<vtkm::exec::arg::FetchTagArrayNeighborhoodIn,
vtkm::exec::arg::AspectTagDefault,
@ -108,7 +48,7 @@ struct Fetch<vtkm::exec::arg::FetchTagArrayNeighborhoodIn,
ExecObjectType>
{
using ThreadIndicesType = vtkm::exec::arg::ThreadIndicesPointNeighborhood;
using ValueType = Neighborhood<ExecObjectType>;
using ValueType = vtkm::exec::FieldNeighborhood<ExecObjectType>;
VTKM_SUPPRESS_EXEC_WARNINGS
VTKM_EXEC

@ -20,6 +20,7 @@
#ifndef vtk_m_exec_arg_ThreadIndicesPointNeighborhood_h
#define vtk_m_exec_arg_ThreadIndicesPointNeighborhood_h
#include <vtkm/exec/BoundaryState.h>
#include <vtkm/exec/ConnectivityStructured.h>
#include <vtkm/exec/arg/ThreadIndicesBasic.h>
#include <vtkm/exec/arg/ThreadIndicesTopologyMap.h> //for Deflate and Inflate
@ -33,157 +34,6 @@ namespace exec
namespace arg
{
/// \brief Provides information if the current point is a boundary point
/// Provides functionality for WorkletPointNeighborhood algorithms
/// and Fetch's to determine if they are operating on a boundary point
//Todo we need to have this class handle different BoundaryTypes
struct BoundaryState
{
VTKM_EXEC
BoundaryState(const vtkm::Id3& ijk, const vtkm::Id3& pdims)
: IJK(ijk)
, PointDimensions(pdims)
{
}
//@{
/// Returns true if a neighborhood of the given radius is contained within the bounds of the cell
/// set in the X, Y, or Z direction. Returns false if the neighborhood extends ouside of the
/// boundary of the data in the X, Y, or Z direction.
///
/// The radius defines the size of the neighborhood in terms of how far away it extends from the
/// center. So if there is a radius of 1, the neighborhood extends 1 unit away from the center in
/// each direction and is 3x3x3. If there is a radius of 2, the neighborhood extends 2 units for
/// a size of 5x5x5.
///
VTKM_EXEC bool InXBoundary(vtkm::IdComponent radius) const
{
return (((this->IJK[0] - radius) >= 0) && ((this->IJK[0] + radius) < this->PointDimensions[0]));
}
VTKM_EXEC bool InYBoundary(vtkm::IdComponent radius) const
{
return (((this->IJK[1] - radius) >= 0) && ((this->IJK[1] + radius) < this->PointDimensions[1]));
}
VTKM_EXEC bool InZBoundary(vtkm::IdComponent radius) const
{
return (((this->IJK[2] - radius) >= 0) && ((this->IJK[2] + radius) < this->PointDimensions[2]));
}
//@}
/// Returns true if a neighborhood of the given radius is contained within the bounds
/// of the cell set. Returns false if the neighborhood extends ouside of the boundary of the
/// data.
///
/// The radius defines the size of the neighborhood in terms of how far away it extends from the
/// center. So if there is a radius of 1, the neighborhood extends 1 unit away from the center in
/// each direction and is 3x3x3. If there is a radius of 2, the neighborhood extends 2 units for
/// a size of 5x5x5.
///
VTKM_EXEC bool InBoundary(vtkm::IdComponent radius) const
{
return this->InXBoundary(radius) && this->InYBoundary(radius) && this->InZBoundary(radius);
}
/// Returns the minimum neighborhood indices that are within the bounds of the data.
///
VTKM_EXEC vtkm::Vec<vtkm::IdComponent, 3> MinNeighborIndices(vtkm::IdComponent radius) const
{
vtkm::Vec<vtkm::IdComponent, 3> minIndices;
for (vtkm::IdComponent component = 0; component < 3; ++component)
{
if (this->IJK[component] >= radius)
{
minIndices[component] = -radius;
}
else
{
minIndices[component] = static_cast<vtkm::IdComponent>(-this->IJK[component]);
}
}
return minIndices;
}
/// Returns the minimum neighborhood indices that are within the bounds of the data.
///
VTKM_EXEC vtkm::Vec<vtkm::IdComponent, 3> MaxNeighborIndices(vtkm::IdComponent radius) const
{
vtkm::Vec<vtkm::IdComponent, 3> maxIndices;
for (vtkm::IdComponent component = 0; component < 3; ++component)
{
if ((this->PointDimensions[component] - this->IJK[component] - 1) >= radius)
{
maxIndices[component] = radius;
}
else
{
maxIndices[component] = static_cast<vtkm::IdComponent>(this->PointDimensions[component] -
this->IJK[component] - 1);
}
}
return maxIndices;
}
//todo: This needs to work with BoundaryConstantValue
//todo: This needs to work with BoundaryPeroidic
//@{
/// Takes a local neighborhood index (in the ranges of -neighborhood size to neighborhood size)
/// and returns the ijk of the equivalent point in the full data set. If the given value is out
/// of range, the value is clamped to the nearest boundary. For example, if given a neighbor
/// index that is past the minimum x range of the data, the index at the minimum x boundary is
/// returned.
///
VTKM_EXEC vtkm::Id3 NeighborIndexToFullIndexClamp(
const vtkm::Vec<vtkm::IdComponent, 3>& neighbor) const
{
vtkm::Id3 fullIndex = this->IJK + neighbor;
return vtkm::Max(vtkm::Id3(0), vtkm::Min(this->PointDimensions - vtkm::Id3(1), fullIndex));
}
VTKM_EXEC vtkm::Id3 NeighborIndexToFullIndexClamp(vtkm::IdComponent neighborI,
vtkm::IdComponent neighborJ,
vtkm::IdComponent neighborK) const
{
return this->NeighborIndexToFullIndexClamp(vtkm::make_Vec(neighborI, neighborJ, neighborK));
}
//@}
//todo: This needs to work with BoundaryConstantValue
//todo: This needs to work with BoundaryPeroidic
//@{
/// Takes a local neighborhood index (in the ranges of -neighborhood size to neighborhood size)
/// and returns the flat index of the equivalent point in the full data set. If the given value
/// is out of range, the value is clamped to the nearest boundary. For example, if given a
/// neighbor index that is past the minimum x range of the data, the index at the minimum x
/// boundary is returned.
///
VTKM_EXEC vtkm::Id NeighborIndexToFlatIndexClamp(
const vtkm::Vec<vtkm::IdComponent, 3>& neighbor) const
{
vtkm::Id3 full = this->NeighborIndexToFullIndexClamp(neighbor);
return (full[2] * this->PointDimensions[1] + full[1]) * this->PointDimensions[0] + full[0];
}
VTKM_EXEC vtkm::Id NeighborIndexToFlatIndexClamp(vtkm::IdComponent neighborI,
vtkm::IdComponent neighborJ,
vtkm::IdComponent neighborK) const
{
return this->NeighborIndexToFlatIndexClamp(vtkm::make_Vec(neighborI, neighborJ, neighborK));
}
//@}
vtkm::Id3 IJK;
vtkm::Id3 PointDimensions;
};
namespace detail
{
/// Given a \c Vec of (semi) arbitrary size, inflate it to a vtkm::Id3 by padding with zeros.
@ -276,7 +126,7 @@ public:
}
VTKM_EXEC
const BoundaryState& GetBoundaryState() const { return this->State; }
const vtkm::exec::BoundaryState& GetBoundaryState() const { return this->State; }
VTKM_EXEC
vtkm::Id GetInputIndex() const { return this->InputIndex; }
@ -297,7 +147,7 @@ public:
vtkm::Id GetGlobalIndex() const { return (this->GlobalThreadIndexOffset + this->OutputIndex); }
private:
BoundaryState State;
vtkm::exec::BoundaryState State;
vtkm::Id InputIndex;
vtkm::Id OutputIndex;
vtkm::IdComponent VisitIndex;

@ -604,8 +604,8 @@ public:
const auto& boundary = tpn.GetBoundaryState();
auto pointPortal = pointCoordinates.GetPortal();
auto fieldPortal = inputField.GetPortal();
vtkm::exec::arg::Neighborhood<decltype(pointPortal)> points(pointPortal, boundary);
vtkm::exec::arg::Neighborhood<decltype(fieldPortal)> field(fieldPortal, boundary);
vtkm::exec::FieldNeighborhood<decltype(pointPortal)> points(pointPortal, boundary);
vtkm::exec::FieldNeighborhood<decltype(fieldPortal)> field(fieldPortal, boundary);
vtkm::worklet::gradient::StructuredPointGradient<T> gradient;
gradient(boundary, points, field, normal);
@ -688,8 +688,8 @@ public:
const auto& boundary = tpn.GetBoundaryState();
auto pointPortal = pointCoordinates.GetPortal();
auto fieldPortal = inputField.GetPortal();
vtkm::exec::arg::Neighborhood<decltype(pointPortal)> points(pointPortal, boundary);
vtkm::exec::arg::Neighborhood<decltype(fieldPortal)> field(fieldPortal, boundary);
vtkm::exec::FieldNeighborhood<decltype(pointPortal)> points(pointPortal, boundary);
vtkm::exec::FieldNeighborhood<decltype(fieldPortal)> field(fieldPortal, boundary);
vtkm::worklet::gradient::StructuredPointGradient<T> gradient;
NormalType grad1;

@ -39,12 +39,12 @@
#include <vtkm/cont/arg/TypeCheckTagArray.h>
#include <vtkm/cont/arg/TypeCheckTagCellSetStructured.h>
#include <vtkm/exec/arg/Boundary.h>
#include <vtkm/exec/arg/FetchTagArrayDirectIn.h>
#include <vtkm/exec/arg/FetchTagArrayDirectInOut.h>
#include <vtkm/exec/arg/FetchTagArrayDirectOut.h>
#include <vtkm/exec/arg/FetchTagArrayNeighborhoodIn.h>
#include <vtkm/exec/arg/FetchTagCellSetIn.h>
#include <vtkm/exec/arg/OnBoundary.h>
#include <vtkm/exec/arg/ThreadIndicesPointNeighborhood.h>
#include <vtkm/worklet/ScatterIdentity.h>
@ -87,16 +87,16 @@ public:
template <typename Worklet>
using Dispatcher = vtkm::worklet::DispatcherPointNeighborhood<Worklet>;
/// \brief The \c ExecutionSignature tag to get if you the current iteration is on a boundary.
/// \brief The \c ExecutionSignature tag to query if the current iteration is inside the boundary.
///
/// A \c WorkletPointNeighborhood operates by iterating over all points using
/// a defined neighborhood. This \c ExecutionSignature tag provides different
/// types when you are on or off a boundary, allowing for separate code paths
/// just for handling boundaries.
/// A \c WorkletPointNeighborhood operates by iterating over all points using a defined
/// neighborhood. This \c ExecutionSignature tag provides a \c BoundaryState object that allows
/// you to query whether the neighborhood of the current iteration is completely inside the
/// bounds of the mesh or if it extends beyond the mesh. This is important as when you are on a
/// boundary the neighboordhood will contain empty values for a certain subset of values, and in
/// this case the values returned will depend on the boundary behavior.
///
/// This is important as when you are on a boundary the neighboordhood will
/// contain empty values for a certain subset of values
struct OnBoundary : vtkm::exec::arg::OnBoundary
struct Boundary : vtkm::exec::arg::Boundary
{
};

@ -46,12 +46,12 @@ struct StructuredPointGradient : public vtkm::worklet::WorkletPointNeighborhood
FieldInNeighborhood<StructuredPointGradientInType<T>>,
GradientOutputs outputFields);
using ExecutionSignature = void(OnBoundary, _2, _3, _4);
using ExecutionSignature = void(Boundary, _2, _3, _4);
using InputDomain = _1;
template <typename PointsIn, typename FieldIn, typename GradientOutType>
VTKM_EXEC void operator()(const vtkm::exec::arg::BoundaryState& boundary,
VTKM_EXEC void operator()(const vtkm::exec::BoundaryState& boundary,
const PointsIn& inputPoints,
const FieldIn& inputField,
GradientOutType& outputGradient) const
@ -77,8 +77,8 @@ struct StructuredPointGradient : public vtkm::worklet::WorkletPointNeighborhood
}
template <typename FieldIn, typename GradientOutType>
VTKM_EXEC void operator()(const vtkm::exec::arg::BoundaryState& boundary,
const vtkm::exec::arg::Neighborhood<
VTKM_EXEC void operator()(const vtkm::exec::BoundaryState& boundary,
const vtkm::exec::FieldNeighborhood<
vtkm::internal::ArrayPortalUniformPointCoordinates>& inputPoints,
const FieldIn& inputField,
GradientOutType& outputGradient) const
@ -87,7 +87,7 @@ struct StructuredPointGradient : public vtkm::worklet::WorkletPointNeighborhood
//performance by not doing the Jacobian, but instead do an image gradient
//using central differences
using PointsIn =
vtkm::exec::arg::Neighborhood<vtkm::internal::ArrayPortalUniformPointCoordinates>;
vtkm::exec::FieldNeighborhood<vtkm::internal::ArrayPortalUniformPointCoordinates>;
using CoordType = typename PointsIn::ValueType;
using OT = typename GradientOutType::ComponentType;
@ -112,7 +112,7 @@ struct StructuredPointGradient : public vtkm::worklet::WorkletPointNeighborhood
//will be float,3 even when T is a 3 component field
template <typename PointsIn, typename CT>
VTKM_EXEC void Jacobian(const PointsIn& inputPoints,
const vtkm::exec::arg::BoundaryState& boundary,
const vtkm::exec::BoundaryState& boundary,
vtkm::Vec<CT, 3>& m_xi,
vtkm::Vec<CT, 3>& m_eta,
vtkm::Vec<CT, 3>& m_zeta) const

@ -43,13 +43,13 @@ struct MaxNeighborValue : public vtkm::worklet::WorkletPointNeighborhood
CellSetIn,
FieldOut<Scalar> maxV);
using ExecutionSignature = void(OnBoundary, _1, _3);
using ExecutionSignature = void(Boundary, _1, _3);
//verify input domain can be something other than first parameter
using InputDomain = _2;
template <typename FieldIn, typename FieldOut>
VTKM_EXEC void operator()(const vtkm::exec::arg::BoundaryState& boundary,
const vtkm::exec::arg::Neighborhood<FieldIn>& inputField,
VTKM_EXEC void operator()(const vtkm::exec::BoundaryState& boundary,
const vtkm::exec::FieldNeighborhood<FieldIn>& inputField,
FieldOut& output) const
{
using ValueType = typename FieldIn::ValueType;