Make BinaryOperators/Predicates more flexible.

Allow the argument types to differ. This allows ArrayPortalValueReferences to be used.
This commit is contained in:
Allison Vacanti 2019-12-06 12:52:26 -05:00
parent 4bf1eefd83
commit 84eedc8855
5 changed files with 125 additions and 68 deletions

@ -29,26 +29,48 @@ namespace vtkm
/// Binary Predicate that takes two arguments argument \c x, and \c y and
/// returns sum (addition) of the two values.
/// Note: Requires Type \p T implement the + operator.
/// @note Requires a suitable definition of `operator+(T, U)`.
struct Sum
{
template <typename T>
VTKM_EXEC_CONT T operator()(const T& x, const T& y) const
template <typename T, typename U>
VTKM_EXEC_CONT auto operator()(const T& x, const U& y) const -> decltype(x + y)
{
return x + y;
}
// If both types are the same integral type, explicitly cast the result to
// type T to avoid narrowing conversion warnings from operations that promote
// to int (e.g. `int operator+(char, char)`)
template <typename T>
VTKM_EXEC_CONT
typename std::enable_if<std::is_integral<T>::value && sizeof(T) < sizeof(int), T>::type
operator()(const T& x, const T& y) const
{
return static_cast<T>(x + y);
}
};
/// Binary Predicate that takes two arguments argument \c x, and \c y and
/// returns product (multiplication) of the two values.
/// Note: Requires Type \p T implement the * operator.
/// @note Requires a suitable definition of `operator*(T, U)`.
struct Product
{
template <typename T>
VTKM_EXEC_CONT T operator()(const T& x, const T& y) const
template <typename T, typename U>
VTKM_EXEC_CONT auto operator()(const T& x, const U& y) const -> decltype(x * y)
{
return x * y;
}
// If both types are the same integral type, explicitly cast the result to
// type T to avoid narrowing conversion warnings from operations that promote
// to int (e.g. `int operator+(char, char)`)
template <typename T>
VTKM_EXEC_CONT
typename std::enable_if<std::is_integral<T>::value && sizeof(T) < sizeof(int), T>::type
operator()(const T& x, const T& y) const
{
return static_cast<T>(x * y);
}
};
#if (defined(VTKM_GCC) || defined(VTKM_CLANG))
@ -57,12 +79,13 @@ struct Product
/// Binary Predicate that takes two arguments argument \c x, and \c y and
/// returns the \c x if x > y otherwise returns \c y.
/// Note: Requires Type \p T implement the < operator.
/// @note Requires a suitable definition of `bool operator<(T, U)` and that
/// `T` and `U` share a common type.
//needs to be full length to not clash with vtkm::math function Max.
struct Maximum
{
template <typename T>
VTKM_EXEC_CONT T operator()(const T& x, const T& y) const
template <typename T, typename U>
VTKM_EXEC_CONT typename std::common_type<T, U>::type operator()(const T& x, const U& y) const
{
return x < y ? y : x;
}
@ -70,19 +93,20 @@ struct Maximum
/// Binary Predicate that takes two arguments argument \c x, and \c y and
/// returns the \c x if x < y otherwise returns \c y.
/// Note: Requires Type \p T implement the < operator.
/// @note Requires a suitable definition of `bool operator<(T, U)` and that
/// `T` and `U` share a common type.
//needs to be full length to not clash with vtkm::math function Min.
struct Minimum
{
template <typename T>
VTKM_EXEC_CONT T operator()(const T& x, const T& y) const
template <typename T, typename U>
VTKM_EXEC_CONT typename std::common_type<T, U>::type operator()(const T& x, const U& y) const
{
return x < y ? x : y;
}
};
/// Binary Predicate that takes two arguments argument \c x, and \c y and
/// returns a vtkm::Vec<T,2> that represents the minimum and maximum values
/// returns a vtkm::Vec<T,2> that represents the minimum and maximum values.
/// Note: Requires Type \p T implement the vtkm::Min and vtkm::Max functions.
template <typename T>
struct MinAndMax
@ -117,38 +141,71 @@ struct MinAndMax
/// Binary Predicate that takes two arguments argument \c x, and \c y and
/// returns the bitwise operation <tt>x&y</tt>
/// Note: Requires Type \p T implement the & operator.
/// @note Requires a suitable definition of `operator&(T, U)`.
struct BitwiseAnd
{
template <typename T>
VTKM_EXEC_CONT T operator()(const T& x, const T& y) const
template <typename T, typename U>
VTKM_EXEC_CONT auto operator()(const T& x, const U& y) const -> decltype(x & y)
{
return x & y;
}
// If both types are the same integral type, explicitly cast the result to
// type T to avoid narrowing conversion warnings from operations that promote
// to int (e.g. `int operator+(char, char)`)
template <typename T>
VTKM_EXEC_CONT
typename std::enable_if<std::is_integral<T>::value && sizeof(T) < sizeof(int), T>::type
operator()(const T& x, const T& y) const
{
return static_cast<T>(x & y);
}
};
/// Binary Predicate that takes two arguments argument \c x, and \c y and
/// returns the bitwise operation <tt>x|y</tt>
/// Note: Requires Type \p T implement the | operator.
/// @note Requires a suitable definition of `operator&(T, U)`.
struct BitwiseOr
{
template <typename T>
VTKM_EXEC_CONT T operator()(const T& x, const T& y) const
template <typename T, typename U>
VTKM_EXEC_CONT auto operator()(const T& x, const U& y) const -> decltype(x | y)
{
return x | y;
}
// If both types are the same integral type, explicitly cast the result to
// type T to avoid narrowing conversion warnings from operations that promote
// to int (e.g. `int operator+(char, char)`)
template <typename T>
VTKM_EXEC_CONT
typename std::enable_if<std::is_integral<T>::value && sizeof(T) < sizeof(int), T>::type
operator()(const T& x, const T& y) const
{
return static_cast<T>(x | y);
}
};
/// Binary Predicate that takes two arguments argument \c x, and \c y and
/// returns the bitwise operation <tt>x^y</tt>
/// Note: Requires Type \p T implement the ^ operator.
/// @note Requires a suitable definition of `operator&(T, U)`.
struct BitwiseXor
{
template <typename T>
VTKM_EXEC_CONT T operator()(const T& x, const T& y) const
template <typename T, typename U>
VTKM_EXEC_CONT auto operator()(const T& x, const U& y) const -> decltype(x ^ y)
{
return x ^ y;
}
// If both types are the same integral type, explicitly cast the result to
// type T to avoid narrowing conversion warnings from operations that promote
// to int (e.g. `int operator+(char, char)`)
template <typename T>
VTKM_EXEC_CONT
typename std::enable_if<std::is_integral<T>::value && sizeof(T) < sizeof(int), T>::type
operator()(const T& x, const T& y) const
{
return static_cast<T>(x ^ y);
}
};
} // namespace vtkm

@ -15,37 +15,37 @@
namespace vtkm
{
/// Binary Predicate that takes two arguments argument \c x, and \c y and
/// returns True if and only if \c x is equal to \c y.
/// Note: Requires Type \p T implement the == operator.
struct Equal
{
template <typename T>
VTKM_EXEC_CONT bool operator()(const T& x, const T& y) const
{
return x == y;
}
};
/// Binary Predicate that takes two arguments argument \c x, and \c y and
/// returns True if and only if \c x is not equal to \c y.
/// Note: Requires Type \p T implement the != operator.
/// @note: Requires that types T and U are comparable with !=.
struct NotEqual
{
template <typename T>
VTKM_EXEC_CONT bool operator()(const T& x, const T& y) const
template <typename T, typename U>
VTKM_EXEC_CONT bool operator()(const T& x, const U& y) const
{
return x != y;
}
};
/// Binary Predicate that takes two arguments argument \c x, and \c y and
/// returns True if and only if \c x is equal to \c y.
/// @note: Requires that types T and U are comparable with !=.
struct Equal
{
template <typename T, typename U>
VTKM_EXEC_CONT bool operator()(const T& x, const U& y) const
{
return x == y;
}
};
/// Binary Predicate that takes two arguments argument \c x, and \c y and
/// returns True if and only if \c x is less than \c y.
/// Note: Requires Type \p T implement the < operator.
/// @note: Requires that types T and U are comparable with <.
struct SortLess
{
template <typename T>
VTKM_EXEC_CONT bool operator()(const T& x, const T& y) const
template <typename T, typename U>
VTKM_EXEC_CONT bool operator()(const T& x, const U& y) const
{
return x < y;
}
@ -53,12 +53,12 @@ struct SortLess
/// Binary Predicate that takes two arguments argument \c x, and \c y and
/// returns True if and only if \c x is greater than \c y.
/// Note: Requires Type \p T implement the < operator, as we invert the
/// comparison
/// @note: Requires that types T and U are comparable via operator<(U, T).
struct SortGreater
{
template <typename T>
VTKM_EXEC_CONT bool operator()(const T& x, const T& y) const
template <typename T, typename U>
VTKM_EXEC_CONT bool operator()(const T& x, const U& y) const
{
return y < x;
}
@ -66,12 +66,12 @@ struct SortGreater
/// Binary Predicate that takes two arguments argument \c x, and \c y and
/// returns True if and only if \c x and \c y are True.
/// Note: Requires Type \p T to be convertible to \c bool or implement the
/// && operator.
/// @note: Requires that types T and U are comparable with &&.
struct LogicalAnd
{
template <typename T>
VTKM_EXEC_CONT bool operator()(const T& x, const T& y) const
template <typename T, typename U>
VTKM_EXEC_CONT bool operator()(const T& x, const U& y) const
{
return x && y;
}
@ -79,12 +79,11 @@ struct LogicalAnd
/// Binary Predicate that takes two arguments argument \c x, and \c y and
/// returns True if and only if \c x or \c y is True.
/// Note: Requires Type \p T to be convertible to \c bool or implement the
/// || operator.
/// @note: Requires that types T and U are comparable with ||.
struct LogicalOr
{
template <typename T>
VTKM_EXEC_CONT bool operator()(const T& x, const T& y) const
template <typename T, typename U>
VTKM_EXEC_CONT bool operator()(const T& x, const U& y) const
{
return x || y;
}

@ -1293,7 +1293,7 @@ private:
"Got bad value from Reduce with pair comparison object");
std::cout << " Reduce bool array with vtkm::BitwiseAnd to see if all values are true."
std::cout << " Reduce bool array with vtkm::LogicalAnd to see if all values are true."
<< std::endl;
//construct an array of bools and verify that they aren't all true
constexpr vtkm::Id inputLength = 60;
@ -1304,8 +1304,8 @@ private:
true, true, true, true, true, true, true, true, true, true, true, true, true, true, true
};
auto barray = vtkm::cont::make_ArrayHandle(inputValues, inputLength);
bool all_true = Algorithm::Reduce(barray, true, vtkm::BitwiseAnd());
VTKM_TEST_ASSERT(all_true == false, "reduction with vtkm::BitwiseAnd should return false");
bool all_true = Algorithm::Reduce(barray, true, vtkm::LogicalAnd());
VTKM_TEST_ASSERT(all_true == false, "reduction with vtkm::LogicalAnd should return false");
std::cout << " Reduce with custom value type and custom comparison operator." << std::endl;
//test with a custom value type with the reduction value being a vtkm::Vec<float,2>

@ -136,31 +136,32 @@ void TestBinaryOperators()
{
vtkm::testing::Testing::TryTypes(BinaryOperatorTestFunctor());
vtkm::UInt32 v1 = 0xccccccccu;
vtkm::UInt32 v2 = 0xffffffffu;
vtkm::UInt32 v3 = 0x0u;
//test BitwiseAnd
{
vtkm::BitwiseAnd bitwise_and;
VTKM_TEST_ASSERT(bitwise_and(true, true) == true, "bitwise_and true wrong.");
VTKM_TEST_ASSERT(bitwise_and(true, false) == false, "bitwise_and true wrong.");
VTKM_TEST_ASSERT(bitwise_and(false, true) == false, "bitwise_and true wrong.");
VTKM_TEST_ASSERT(bitwise_and(false, false) == false, "bitwise_and true wrong.");
VTKM_TEST_ASSERT(bitwise_and(v1, v2) == (v1 & v2), "bitwise_and wrong.");
VTKM_TEST_ASSERT(bitwise_and(v1, v3) == (v1 & v3), "bitwise_and wrong.");
VTKM_TEST_ASSERT(bitwise_and(v2, v3) == (v2 & v3), "bitwise_and wrong.");
}
//test BitwiseOr
{
vtkm::BitwiseOr bitwise_or;
VTKM_TEST_ASSERT(bitwise_or(true, true) == true, "bitwise_or true wrong.");
VTKM_TEST_ASSERT(bitwise_or(true, false) == true, "bitwise_or true wrong.");
VTKM_TEST_ASSERT(bitwise_or(false, true) == true, "bitwise_or true wrong.");
VTKM_TEST_ASSERT(bitwise_or(false, false) == false, "bitwise_or true wrong.");
VTKM_TEST_ASSERT(bitwise_or(v1, v2) == (v1 | v2), "bitwise_or wrong.");
VTKM_TEST_ASSERT(bitwise_or(v1, v3) == (v1 | v3), "bitwise_or wrong.");
VTKM_TEST_ASSERT(bitwise_or(v2, v3) == (v2 | v3), "bitwise_or wrong.");
}
//test BitwiseXor
{
vtkm::BitwiseXor bitwise_xor;
VTKM_TEST_ASSERT(bitwise_xor(true, true) == false, "bitwise_xor true wrong.");
VTKM_TEST_ASSERT(bitwise_xor(true, false) == true, "bitwise_xor true wrong.");
VTKM_TEST_ASSERT(bitwise_xor(false, true) == true, "bitwise_xor true wrong.");
VTKM_TEST_ASSERT(bitwise_xor(false, false) == false, "bitwise_xor true wrong.");
VTKM_TEST_ASSERT(bitwise_xor(v1, v2) == (v1 ^ v2), "bitwise_xor wrong.");
VTKM_TEST_ASSERT(bitwise_xor(v1, v3) == (v1 ^ v3), "bitwise_xor wrong.");
VTKM_TEST_ASSERT(bitwise_xor(v2, v3) == (v2 ^ v3), "bitwise_xor wrong.");
}
}

@ -152,7 +152,7 @@ void CosmoTools<T, StorageType>::HaloFinder(vtkm::cont::ArrayHandle<vtkm::Id>& r
rootedStar); // output (whole array)
// If all vertices are in rooted stars, algorithm is complete
bool allStars = DeviceAlgorithm::Reduce(rootedStar, true, vtkm::BitwiseAnd());
bool allStars = DeviceAlgorithm::Reduce(rootedStar, true, vtkm::LogicalAnd());
if (allStars)
{
break;