Commit Graph

3 Commits

Author SHA1 Message Date
Kenneth Moreland
28ecf3636d Change interface of atomic compare and swap
The old atomic compare and swap operations (`vtkm::AtomicCompareAndSwap`
and `vtkm::exec::AtomicArrayExecutionObject::CompareAndSwap`) had an
order of arguments that was confusing. The order of the arguments was
shared pointer (or index), desired value, expected value. Most people
probably assume expected value comes before desired value. And this
order conflicts with the order in the `std` methods, GCC atomics, and
Kokkos.

Change the interface of atomic operations to be patterned off the
`std::atomic_compare_exchange` and `std::atomic<T>::compare_exchange`
methods. First, these methods have a more intuitive order of parameters
(shared pointer, expected, desired). Second, rather than take a value
for the expected and return the actual old value, they take a pointer to
the expected value (or reference in `AtomicArrayExecutionObject`) and
modify this value in the case that it does not match the actual value.
This makes it harder to mix up the expected and desired parameters.
Also, because the methods return a bool indicating whether the value was
changed, there is an additional benefit that compare-exchange loops are
implemented easier.

For example, consider you want to apply the function `MyOp` on a
`sharedValue` atomically. With the old interface, you would have to do
something like this.

```cpp
T oldValue;
T newValue;
do
{
  oldValue = *sharedValue;
  newValue = MyOp(oldValue);
} while (vtkm::AtomicCompareAndSwap(sharedValue, newValue, oldValue) != oldValue);
```

With the new interface, this is simplfied to this.

```cpp
T oldValue = *sharedValue;
while (!vtkm::AtomicCompareExchange(sharedValue, &oldValue, MyOp(oldValue));
```
2020-10-20 08:39:22 -06:00
Allison Vacanti
5db762ee71 Refactor topology mappings to clarify meaning.
The `From` and `To` nomenclature for topology mapping has been confusing for
both users and developers, especially at lower levels where the intention of
mapping attributes from one element to another is easily conflated with the
concept of mapping indices (which maps in the exact opposite direction).

These identifiers have been renamed to `VisitTopology` and `IncidentTopology`
to clarify the direction of the mapping. The order in which these template
parameters are specified for `WorkletMapTopology` have also been reversed,
since eventually there may be more than one `IncidentTopology`, and having
`IncidentTopology` at the end will allow us to replace it with a variadic
template parameter pack in the future.

Other implementation details supporting these worklets, include `Fetch` tags,
`Connectivity` classes, and methods on the various `CellSet` classes (such as
`PrepareForInput` have also reversed their template arguments. These will need
to be cautiously updated.

The convenience implementations of `WorkletMapTopology` have been renamed for
clarity as follows:

```
WorkletMapPointToCell --> WorkletVisitCellsWithPoints
WorkletMapCellToPoint --> WorkletVisitPointsWithCells
```

The `ControlSignature` tags have been renamed as follows:

```
FieldInTo --> FieldInVisit
FieldInFrom --> FieldInMap
FromCount --> IncidentElementCount
FromIndices --> IncidentElementIndices
```
2019-08-06 11:27:26 -04:00
Allison Vacanti
ab627b61d6 Add OrientNormals worklet. 2019-08-01 10:57:58 -04:00