vtk-m/vtkm/cont/testing/UnitTestDataSetPermutation.cxx
Kenneth Moreland 6e5f188b7c Add DeviceAdapterSerial.h to data set permuation test
A recent change to the DeviceAdapter header includes the TBB device if
available instead of the serial device. Thus, DeviceAdapterTagSerial was
not defined automatically in all cases for the build of
UnitTestDataSetPermutation. Add the header for that explicitly.
2015-11-02 10:49:51 -07:00

264 lines
8.3 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 Sandia Corporation.
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#include <vtkm/cont/DataSet.h>
#include <vtkm/cont/CellSetSingleType.h>
#include <vtkm/cont/CellSetPermutation.h>
#include <vtkm/cont/DeviceAdapterAlgorithm.h>
#include <vtkm/cont/DeviceAdapterSerial.h>
#include <vtkm/cont/testing/Testing.h>
#include <vtkm/cont/testing/MakeTestDataSet.h>
#include <vtkm/worklet/CellAverage.h>
#include <vtkm/worklet/DispatcherMapTopology.h>
namespace {
template<typename T, typename Storage>
bool TestArrayHandle(const vtkm::cont::ArrayHandle<T, Storage> &ah, const T *expected,
vtkm::Id size)
{
if (size != ah.GetNumberOfValues())
{
return false;
}
for (vtkm::Id i = 0; i < size; ++i)
{
if (ah.GetPortalConstControl().Get(i) != expected[i])
{
return false;
}
}
return true;
}
inline vtkm::cont::DataSet make_SingleTypeDataSet()
{
using vtkm::cont::Field;
vtkm::cont::DataSet dataSet;
const int nVerts = 5;
typedef vtkm::Vec<vtkm::Float32,3> CoordType;
CoordType coordinates[nVerts] = {
CoordType(0, 0, 0),
CoordType(1, 0, 0),
CoordType(1, 1, 0),
CoordType(2, 1, 0),
CoordType(2, 2, 0)
};
//Set coordinate system
dataSet.AddCoordinateSystem(
vtkm::cont::CoordinateSystem("coordinates", 1, coordinates, nVerts));
//Set point scalar
vtkm::Float32 vars[nVerts] = {10.1f, 20.1f, 30.2f, 40.2f, 50.3f};
dataSet.AddField(Field("pointvar", 1, vtkm::cont::Field::ASSOC_POINTS, vars, nVerts));
std::vector<vtkm::Id> conn;
// First Cell
conn.push_back(0);
conn.push_back(1);
conn.push_back(2);
// Second Cell
conn.push_back(1);
conn.push_back(2);
conn.push_back(3);
// Third Cell
conn.push_back(2);
conn.push_back(3);
conn.push_back(4);
vtkm::cont::CellSetSingleType<> cellSet(vtkm::CellShapeTagTriangle(),
"cells");
cellSet.FillViaCopy(conn);
dataSet.AddCellSet(cellSet);
return dataSet;
}
void TestDataSet_Explicit()
{
vtkm::cont::DataSet dataSet = make_SingleTypeDataSet();
std::vector<vtkm::Id> validIds;
validIds.push_back(1); //iterate the 2nd cell 4 times
validIds.push_back(1);
validIds.push_back(1);
validIds.push_back(1);
vtkm::cont::ArrayHandle<vtkm::Id> validCellIds =
vtkm::cont::make_ArrayHandle(validIds);
//get the cellset single type from the dataset
typedef vtkm::cont::CellSetSingleType<> CellSetType;
CellSetType cellSet = dataSet.GetCellSet(0).CastTo<CellSetType>();
//verify that we can create a subset of a singlset
typedef vtkm::cont::CellSetPermutation<vtkm::cont::ArrayHandle<vtkm::Id>,
vtkm::cont::CellSetSingleType<> > SubsetType;
SubsetType subset;
subset.Fill(validCellIds,cellSet);
subset.PrintSummary(std::cout);
typedef SubsetType::ExecutionTypes<vtkm::cont::DeviceAdapterTagSerial,
vtkm::TopologyElementTagPoint,
vtkm::TopologyElementTagCell>::ExecObjectType ExecObjectType;
ExecObjectType execConnectivity;
execConnectivity = subset.PrepareForInput(vtkm::cont::DeviceAdapterTagSerial(),
vtkm::TopologyElementTagPoint(),
vtkm::TopologyElementTagCell());
//run a basic for-each topology algorithm on this
vtkm::cont::ArrayHandle<vtkm::Float32> result;
vtkm::worklet::DispatcherMapTopology<vtkm::worklet::CellAverage> dispatcher;
dispatcher.Invoke(dataSet.GetField("pointvar").GetData(),
subset,
result);
//iterate same cell 4 times
vtkm::Float32 expected[4] = { 30.1667f, 30.1667f, 30.1667f, 30.1667f };
for (int i = 0; i < 4; ++i)
{
VTKM_TEST_ASSERT(test_equal(result.GetPortalConstControl().Get(i),
expected[i]), "Wrong result for CellAverage worklet on explicit subset data");
}
}
void TestDataSet_Structured2D()
{
vtkm::cont::testing::MakeTestDataSet testDataSet;
vtkm::cont::DataSet dataSet = testDataSet.Make2DRegularDataSet0();
std::vector<vtkm::Id> validIds;
validIds.push_back(1); //iterate the 2nd cell 4 times
validIds.push_back(1);
validIds.push_back(1);
validIds.push_back(1);
vtkm::cont::ArrayHandle<vtkm::Id> validCellIds =
vtkm::cont::make_ArrayHandle(validIds);
typedef vtkm::cont::CellSetStructured<2> CellSetType;
CellSetType cellSet = dataSet.GetCellSet(0).CastTo<CellSetType>();
//verify that we can create a subset of a 2d RegularDataSet
vtkm::cont::CellSetPermutation<vtkm::cont::ArrayHandle<vtkm::Id>,
vtkm::cont::CellSetStructured<2> > subset;
subset.Fill(validCellIds,cellSet);
subset.PrintSummary(std::cout);
//verify that we can call PrepareForInput on CellSetSingleType
typedef vtkm::cont::DeviceAdapterTagSerial DeviceAdapterTag;
//verify that PrepareForInput exists
subset.PrepareForInput(DeviceAdapterTag(),
vtkm::TopologyElementTagPoint(),
vtkm::TopologyElementTagCell());
//run a basic for-each topology algorithm on this
vtkm::cont::ArrayHandle<vtkm::Float32> result;
vtkm::worklet::DispatcherMapTopology<vtkm::worklet::CellAverage> dispatcher;
dispatcher.Invoke(dataSet.GetField("pointvar").GetData(),
subset,
result);
vtkm::Float32 expected[4] = { 40.1f, 40.1f, 40.1f, 40.1f };
for (int i = 0; i < 4; ++i)
{
VTKM_TEST_ASSERT(test_equal(result.GetPortalConstControl().Get(i),
expected[i]), "Wrong result for CellAverage worklet on 2d structured subset data");
}
}
void TestDataSet_Structured3D()
{
vtkm::cont::testing::MakeTestDataSet testDataSet;
vtkm::cont::DataSet dataSet = testDataSet.Make3DRegularDataSet0();
std::vector<vtkm::Id> validIds;
validIds.push_back(1); //iterate the 2nd cell 4 times
validIds.push_back(1);
validIds.push_back(1);
validIds.push_back(1);
vtkm::cont::ArrayHandle<vtkm::Id> validCellIds =
vtkm::cont::make_ArrayHandle(validIds);
typedef vtkm::cont::CellSetStructured<3> CellSetType;
CellSetType cellSet = dataSet.GetCellSet(0).CastTo<CellSetType>();
//verify that we can create a subset of a 2d RegularDataSet
vtkm::cont::CellSetPermutation<vtkm::cont::ArrayHandle<vtkm::Id>,
vtkm::cont::CellSetStructured<3> > subset;
subset.Fill(validCellIds,cellSet);
subset.PrintSummary(std::cout);
//verify that PrepareForInput exists
subset.PrepareForInput(
vtkm::cont::DeviceAdapterTagSerial(),
vtkm::TopologyElementTagPoint(),
vtkm::TopologyElementTagCell());
//run a basic for-each topology algorithm on this
vtkm::cont::ArrayHandle<vtkm::Float32> result;
vtkm::worklet::DispatcherMapTopology<vtkm::worklet::CellAverage> dispatcher;
dispatcher.Invoke(dataSet.GetField("pointvar").GetData(),
subset,
result);
vtkm::Float32 expected[4] = { 70.2125f, 70.2125f, 70.2125f, 70.2125f };
for (int i = 0; i < 4; ++i)
{
VTKM_TEST_ASSERT(test_equal(result.GetPortalConstControl().Get(i),
expected[i]), "Wrong result for CellAverage worklet on 2d structured subset data");
}
}
void TestDataSet_Permutation()
{
std::cout << std::endl;
std::cout << "--TestDataSet_Permutation--" << std::endl << std::endl;
TestDataSet_Explicit();
TestDataSet_Structured2D();
TestDataSet_Structured3D();
}
}
int UnitTestDataSetPermutation(int, char *[])
{
return vtkm::cont::testing::Testing::Run(TestDataSet_Permutation);
}