vtk-m/vtkm/cont/ArrayRangeCompute.h
Kenneth Moreland 7d681fb585 Deprecate templated versions of Field::GetRange
Instead, always use precompiled versions of range computing. This means
you won't be able to specify the type. Currently, types are limited to
scalars vecs up to size 4.

The main motivation for this change is to allow you to include Field.h
with a non-device compiler. This is an important feature for our
customers.

I plan in the future to implement a mechanism to pull out a component of
most ArrayHandle's as a single array. This would enable us to support a
precompiled version that can compute the range of arbitrarily sized
Vecs.
2020-11-09 12:28:29 -07:00

159 lines
7.5 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
//
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//============================================================================
#ifndef vtk_m_cont_ArrayRangeCompute_h
#define vtk_m_cont_ArrayRangeCompute_h
#include <vtkm/Range.h>
#include <vtkm/cont/ArrayHandle.h>
#include <vtkm/cont/ArrayHandleCartesianProduct.h>
#include <vtkm/cont/ArrayHandleCompositeVector.h>
#include <vtkm/cont/ArrayHandleUniformPointCoordinates.h>
#include <vtkm/cont/DeviceAdapterTag.h>
namespace vtkm
{
namespace cont
{
///@{
/// \brief Compute the range of the data in an array handle.
///
/// Given an `ArrayHandle`, this function computes the range (min and max) of
/// the values in the array. For arrays containing Vec values, the range is
/// computed for each component.
///
/// This method optionally takes a `vtkm::cont::DeviceAdapterId` to control which
/// devices to try.
///
/// The result is returned in an `ArrayHandle` of `Range` objects. There is
/// one value in the returned array for every component of the input's value
/// type.
///
/// Note that the ArrayRangeCompute.h header file contains only precompiled overloads
/// of ArrayRangeCompute. This is so that ArrayRangeCompute.h can be included in
/// code that does not use a device compiler. If you need to compute array ranges
/// for arbitrary `ArrayHandle`s not in this precompiled list, you need to include
/// ArrayRangeComputeTemplate.h. This contains a templated version of ArrayRangeCompute
/// that will compile for any `ArrayHandle` type not already handled.
///
#define VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_T(T, Storage) \
VTKM_CONT_EXPORT \
VTKM_CONT \
vtkm::cont::ArrayHandle<vtkm::Range> ArrayRangeCompute( \
const vtkm::cont::ArrayHandle<T, Storage>& input, \
vtkm::cont::DeviceAdapterId device = vtkm::cont::DeviceAdapterTagAny())
#define VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_VEC(T, N, Storage) \
VTKM_CONT_EXPORT \
VTKM_CONT \
vtkm::cont::ArrayHandle<vtkm::Range> ArrayRangeCompute( \
const vtkm::cont::ArrayHandle<vtkm::Vec<T, N>, Storage>& input, \
vtkm::cont::DeviceAdapterId device = vtkm::cont::DeviceAdapterTagAny())
#define VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_ALL_SCALAR_T(Storage) \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_T(char, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_T(vtkm::Int8, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_T(vtkm::UInt8, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_T(vtkm::Int16, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_T(vtkm::UInt16, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_T(vtkm::Int32, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_T(vtkm::UInt32, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_T(vtkm::Int64, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_T(vtkm::UInt64, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_T(vtkm::Float32, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_T(vtkm::Float64, Storage)
#define VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_ALL_VEC(N, Storage) \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_VEC(char, N, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_VEC(vtkm::Int8, N, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_VEC(vtkm::UInt8, N, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_VEC(vtkm::Int16, N, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_VEC(vtkm::UInt16, N, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_VEC(vtkm::Int32, N, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_VEC(vtkm::UInt32, N, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_VEC(vtkm::Int64, N, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_VEC(vtkm::UInt64, N, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_VEC(vtkm::Float32, N, Storage); \
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_VEC(vtkm::Float64, N, Storage)
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_ALL_SCALAR_T(vtkm::cont::StorageTagBasic);
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_ALL_VEC(2, vtkm::cont::StorageTagBasic);
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_ALL_VEC(3, vtkm::cont::StorageTagBasic);
VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_ALL_VEC(4, vtkm::cont::StorageTagBasic);
#undef VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_T
#undef VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_VEC
#undef VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_ALL_SCALAR_T
#undef VTK_M_ARRAY_RANGE_COMPUTE_EXPORT_ALL_VEC
VTKM_CONT_EXPORT VTKM_CONT vtkm::cont::ArrayHandle<vtkm::Range> ArrayRangeCompute(
const vtkm::cont::ArrayHandle<vtkm::Vec3f,
vtkm::cont::ArrayHandleUniformPointCoordinates::StorageTag>& array,
vtkm::cont::DeviceAdapterId device = vtkm::cont::DeviceAdapterTagAny());
// Implementation of composite vectors
VTKM_CONT_EXPORT
VTKM_CONT
vtkm::cont::ArrayHandle<vtkm::Range> ArrayRangeCompute(
const vtkm::cont::ArrayHandle<vtkm::Vec3f_32,
typename vtkm::cont::ArrayHandleCompositeVector<
vtkm::cont::ArrayHandle<vtkm::Float32>,
vtkm::cont::ArrayHandle<vtkm::Float32>,
vtkm::cont::ArrayHandle<vtkm::Float32>>::StorageTag>& input,
vtkm::cont::DeviceAdapterId device = vtkm::cont::DeviceAdapterTagAny());
VTKM_CONT_EXPORT VTKM_CONT vtkm::cont::ArrayHandle<vtkm::Range> ArrayRangeCompute(
const vtkm::cont::ArrayHandle<vtkm::Vec3f_64,
typename vtkm::cont::ArrayHandleCompositeVector<
vtkm::cont::ArrayHandle<vtkm::Float64>,
vtkm::cont::ArrayHandle<vtkm::Float64>,
vtkm::cont::ArrayHandle<vtkm::Float64>>::StorageTag>& input,
vtkm::cont::DeviceAdapterId device = vtkm::cont::DeviceAdapterTagAny());
// Implementation of cartesian products
template <typename T, typename ST1, typename ST2, typename ST3>
VTKM_CONT inline vtkm::cont::ArrayHandle<vtkm::Range> ArrayRangeCompute(
const vtkm::cont::ArrayHandle<vtkm::Vec<T, 3>,
vtkm::cont::StorageTagCartesianProduct<ST1, ST2, ST3>>& input,
vtkm::cont::DeviceAdapterId device = vtkm::cont::DeviceAdapterTagAny())
{
vtkm::cont::ArrayHandle<vtkm::Range> result;
result.Allocate(3);
vtkm::cont::ArrayHandle<vtkm::Range> componentRangeArray;
vtkm::Range componentRange;
vtkm::cont::ArrayHandle<T, ST1> firstArray = input.GetStorage().GetFirstArray();
componentRangeArray = vtkm::cont::ArrayRangeCompute(firstArray, device);
componentRange = componentRangeArray.ReadPortal().Get(0);
result.WritePortal().Set(0, componentRange);
vtkm::cont::ArrayHandle<T, ST2> secondArray = input.GetStorage().GetSecondArray();
componentRangeArray = vtkm::cont::ArrayRangeCompute(secondArray, device);
componentRange = componentRangeArray.ReadPortal().Get(0);
result.WritePortal().Set(1, componentRange);
vtkm::cont::ArrayHandle<T, ST3> thirdArray = input.GetStorage().GetThirdArray();
componentRangeArray = vtkm::cont::ArrayRangeCompute(thirdArray, device);
componentRange = componentRangeArray.ReadPortal().Get(0);
result.WritePortal().Set(2, componentRange);
return result;
}
///@}
VTKM_CONT_EXPORT void ThrowArrayRangeComputeFailed();
}
} // namespace vtkm::cont
#endif //vtk_m_cont_ArrayRangeCompute_h