vtk-m/examples/streamline/StreamLineUniformGrid.cxx
2015-11-23 12:50:13 -07:00

311 lines
9.4 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 Sandia Corporation.
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#ifndef VTKM_DEVICE_ADAPTER
#define VTKM_DEVICE_ADAPTER VTKM_DEVICE_ADAPTER_SERIAL
#endif
#include <vtkm/worklet/StreamLineUniformGrid.h>
#include <vtkm/worklet/DispatcherMapField.h>
#include <vtkm/Math.h>
#include <vtkm/cont/ArrayHandle.h>
#include <vtkm/cont/DataSet.h>
#include <vtkm/cont/testing/Testing.h>
#include <fstream>
#include <vector>
#include <math.h>
//Suppress warnings about glut being deprecated on OSX
#if (defined(VTKM_GCC) || defined(VTKM_CLANG)) && !defined(VTKM_PGI)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
#if defined (__APPLE__)
# include <GLUT/glut.h>
#else
# include <GL/glut.h>
#endif
#include "../isosurface/quaternion.h"
typedef VTKM_DEFAULT_DEVICE_ADAPTER_TAG DeviceAdapter;
// Output data set shared with opengl
vtkm::worklet::StreamLineFilterUniformGrid<vtkm::Float32, DeviceAdapter> *streamLineFilter;
vtkm::cont::DataSet outDataSet;
// Input parameters
const vtkm::Id nSeeds = 25;
const vtkm::Id nSteps = 2000;
const vtkm::Float32 tStep = 0.5f;
const vtkm::Id direction = vtkm::worklet::internal::BOTH;
// Point location of vertices from a CastAndCall but needs a static cast eventually
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float32, 3> > vertexArray;
// OpenGL display variables
Quaternion qrot;
int lastx, lasty;
int mouse_state = 1;
//
// Functor to retrieve vertex locations from the CoordinateSystem
// Actually need a static cast to ArrayHandle from DynamicArrayHandleCoordinateSystem
// but haven't been able to figure out what that is
//
struct GetVertexArray
{
template <typename ArrayHandleType>
VTKM_CONT_EXPORT
void operator()(ArrayHandleType array) const
{
this->GetVertexPortal(array.GetPortalConstControl());
}
private:
template <typename PortalType>
VTKM_CONT_EXPORT
void GetVertexPortal(const PortalType &portal) const
{
for (vtkm::Id index = 0; index < portal.GetNumberOfValues(); index++)
{
vertexArray.GetPortalControl().Set(index, portal.Get(index));
}
}
};
//
// Initialize the OpenGL state
//
void initializeGL()
{
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glEnable(GL_DEPTH_TEST);
glShadeModel(GL_SMOOTH);
float white[] = { 0.8f, 0.8f, 0.8f, 1.0f };
float black[] = { 0.0f, 0.0f, 0.0f, 1.0f };
float lightPos[] = { 10.0f, 10.0f, 10.5f, 1.0f };
glLightfv(GL_LIGHT0, GL_AMBIENT, white);
glLightfv(GL_LIGHT0, GL_DIFFUSE, white);
glLightfv(GL_LIGHT0, GL_SPECULAR, black);
glLightfv(GL_LIGHT0, GL_POSITION, lightPos);
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, 1);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_NORMALIZE);
glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
}
//
// Render the output using simple OpenGL
//
void displayCall()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective( 60.0f, 1.0f, 1.0f, 100.0f);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0.0f, 0.0f, 100.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f);
glLineWidth(1.0f);
glPushMatrix();
float rotationMatrix[16];
qrot.getRotMat(rotationMatrix);
glMultMatrixf(rotationMatrix);
glTranslatef(-0.5f, -0.5f, -0.5f);
// Get the cell set, coordinate system and coordinate data
vtkm::cont::CellSetExplicit<> &cellSet =
outDataSet.GetCellSet(0).CastTo<vtkm::cont::CellSetExplicit<> >();
const vtkm::cont::DynamicArrayHandleCoordinateSystem &coordArray =
outDataSet.GetCoordinateSystem(0).GetData();
vtkm::Id numberOfCells = cellSet.GetNumberOfCells();
vtkm::Id numberOfPoints = coordArray.GetNumberOfValues();
// Need the actual vertex points from a static cast of the dynamic array but can't get it right
// So use cast and call on a functor that stores that dynamic array into static array we created
vertexArray.Allocate(numberOfPoints);
coordArray.CastAndCall(GetVertexArray());
// Write output data for checking
std::ofstream out;
out.open("sl_trace", std::ofstream::out);
// Each cell is a polyline
glColor3f(1.0f, 0.0f, 0.0f);
for (vtkm::Id polyline = 0; polyline < numberOfCells; polyline++)
{
vtkm::Vec<vtkm::Id, nSteps> polylineIndices;
vtkm::IdComponent numIndices = cellSet.GetNumberOfPointsInCell(polyline);
cellSet.GetIndices(polyline, polylineIndices);
glBegin(GL_LINE_STRIP);
for (vtkm::IdComponent i = 0; i < numIndices; i++)
{
vtkm::Vec<vtkm::Float32,3> pt = vertexArray.GetPortalConstControl().Get(polylineIndices[i]);
glVertex3f(pt[0], pt[1], pt[2]);
out << pt[0] << " " << pt[1] << " " << pt[2] << std::endl;
}
glEnd();
}
glPopMatrix();
glutSwapBuffers();
}
// Allow rotations of the view
void mouseMove(int x, int y)
{
vtkm::Float32 dx = static_cast<vtkm::Float32>(x - lastx);
vtkm::Float32 dy = static_cast<vtkm::Float32>(y - lasty);
if (mouse_state == 0)
{
vtkm::Float32 pi = static_cast<float>(vtkm::Pi());
Quaternion newRotX;
newRotX.setEulerAngles(-0.2f * dx * pi / 180.0f, 0.0f, 0.0f);
qrot.mul(newRotX);
Quaternion newRotY;
newRotY.setEulerAngles(0.0f, 0.0f, -0.2f * dy * pi / 180.0f);
qrot.mul(newRotY);
}
lastx = x;
lasty = y;
glutPostRedisplay();
}
// Respond to mouse button
void mouseCall(int button, int state, int x, int y)
{
if (button == 0) mouse_state = state;
if ((button == 0) && (state == 0)) { lastx = x; lasty = y; }
}
namespace {
template <typename T>
VTKM_EXEC_CONT_EXPORT
vtkm::Vec<T,3> Normalize(vtkm::Vec<T,3> v)
{
T magnitude = static_cast<T>(sqrt(vtkm::dot(v, v)));
T zero = static_cast<T>(0.0);
T one = static_cast<T>(1.0);
if (magnitude == zero)
return vtkm::make_Vec(zero, zero, zero);
else
return one / magnitude * v;
}
}
// Run streamlines on a uniform grid of vector data
int main(int argc, char* argv[])
{
std::cout << "StreamLineUniformGrid Example" << std::endl;
std::cout << "Parameters are fileName [numSeeds maxSteps timeStep direction]" << std::endl << std::endl;
std::cout << "Direction is FORWARD=0 BACKWARD=1 BOTH=2" << std::endl << std::endl;
std::cout << "File is expected to be binary with xdim ydim zdim as 32 bit integers " << std::endl;
std::cout << "followed by vector data per dimension point as 32 bit float" << std::endl;
// Read in the vector data for testing
FILE * pFile = fopen(argv[1], "rb");
if (pFile == NULL) perror ("Error opening file");
// Size of the dataset
int dims[3];
fread(dims, sizeof(int), 3, pFile);
const vtkm::Id3 vdims(dims[0], dims[1], dims[2]);
// Read vector data at each point of the uniform grid and store
vtkm::Id nElements = vdims[0] * vdims[1] * vdims[2] * 3;
float* data = new float[nElements];
fread(data, sizeof(float), nElements, pFile);
std::vector<vtkm::Vec<vtkm::Float32, 3> > field;
for (vtkm::Id i = 0; i < nElements; i++)
{
vtkm::Float32 x = data[i];
vtkm::Float32 y = data[++i];
vtkm::Float32 z = data[++i];
vtkm::Vec<vtkm::Float32, 3> vecData(x, y, z);
field.push_back(Normalize(vecData));
}
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float32, 3> > fieldArray;
fieldArray = vtkm::cont::make_ArrayHandle(&field[0], field.size());
// Construct the input dataset (uniform) to hold the input and set vector data
vtkm::cont::DataSet inDataSet;
vtkm::cont::ArrayHandleUniformPointCoordinates coordinates(vdims);
inDataSet.AddCoordinateSystem(vtkm::cont::CoordinateSystem("coordinates", 1, coordinates));
inDataSet.AddField(vtkm::cont::Field("vecData", 1, vtkm::cont::Field::ASSOC_POINTS, fieldArray));
vtkm::cont::CellSetStructured<3> inCellSet("cells");
inCellSet.SetPointDimensions(vtkm::make_Vec(vdims[0], vdims[1], vdims[2]));
inDataSet.AddCellSet(inCellSet);
// Create and run the filter
streamLineFilter = new vtkm::worklet::StreamLineFilterUniformGrid<vtkm::Float32, DeviceAdapter>
(direction,
nSeeds,
nSteps,
tStep);
outDataSet = streamLineFilter->Run(inDataSet);
// Render the output dataset of polylines
lastx = lasty = 0;
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
glutInitWindowSize(1000, 1000);
glutCreateWindow("VTK-m Uniform 3D StreamLines");
initializeGL();
glutDisplayFunc(displayCall);
glutMotionFunc(mouseMove);
glutMouseFunc(mouseCall);
glutMainLoop();
return 0;
}
#if (defined(VTKM_GCC) || defined(VTKM_CLANG)) && !defined(VTKM_PGI)
# pragma GCC diagnostic pop
#endif