vtk-m/examples/tetrahedra/TetrahedralizeUniformGrid.cxx
Kenneth Moreland 713cf4228a Make it not possible to create a cell set without specifying num points
The CellSetExplicit and CellSetSingleType classes have an ivar that
marks the number of points. There were several instances of code
creating cell sets without specifying the number of points. This can be
very bad if subsequent code needs that information.
2017-01-12 13:02:10 -07:00

327 lines
9.7 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 Sandia Corporation.
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#ifndef VTKM_DEVICE_ADAPTER
#define VTKM_DEVICE_ADAPTER VTKM_DEVICE_ADAPTER_SERIAL
#endif
#include <vtkm/worklet/TetrahedralizeUniformGrid.h>
#include <vtkm/worklet/DispatcherMapField.h>
#include <vtkm/Math.h>
#include <vtkm/cont/DataSet.h>
#include <vtkm/cont/testing/Testing.h>
//Suppress warnings about glut being deprecated on OSX
#if (defined(VTKM_GCC) || defined(VTKM_CLANG))
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
#if defined (__APPLE__)
# include <GLUT/glut.h>
#else
# include <GL/glut.h>
#endif
#include "../isosurface/quaternion.h"
typedef VTKM_DEFAULT_DEVICE_ADAPTER_TAG DeviceAdapter;
// Default size of the example
vtkm::Id3 dims(4,4,4);
vtkm::Id cellsToDisplay = 64;
vtkm::Id numberOfInPoints;
// Takes input uniform grid and outputs unstructured grid of tets
vtkm::worklet::TetrahedralizeFilterUniformGrid<DeviceAdapter> *tetrahedralizeFilter;
vtkm::cont::DataSet tetDataSet;
// Point location of vertices from a CastAndCall but needs a static cast eventually
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float64, 3> > vertexArray;
// OpenGL display variables
Quaternion qrot;
int lastx, lasty;
int mouse_state = 1;
//
// Construct an input data set with uniform grid of indicated dimensions, origin and spacing
//
vtkm::cont::DataSet MakeTetrahedralizeTestDataSet(vtkm::Id3 dim)
{
vtkm::cont::DataSet dataSet;
// Place uniform grid on a set physical space so OpenGL drawing is easier
const vtkm::Id3 vdims(dim[0] + 1, dim[1] + 1, dim[2] + 1);
const vtkm::Vec<vtkm::Float32, 3> origin = vtkm::make_Vec(0.0f, 0.0f, 0.0f);
const vtkm::Vec<vtkm::Float32, 3> spacing = vtkm::make_Vec(
1.0f/static_cast<vtkm::Float32>(dim[0]),
1.0f/static_cast<vtkm::Float32>(dim[1]),
1.0f/static_cast<vtkm::Float32>(dim[2]));
// Generate coordinate system
vtkm::cont::ArrayHandleUniformPointCoordinates coordinates(vdims, origin, spacing);
dataSet.AddCoordinateSystem(
vtkm::cont::CoordinateSystem("coordinates", coordinates));
// Generate cell set
vtkm::cont::CellSetStructured<3> cellSet("cells");
cellSet.SetPointDimensions(vdims);
dataSet.AddCellSet(cellSet);
return dataSet;
}
//
// Functor to retrieve vertex locations from the CoordinateSystem
// Actually need a static cast to ArrayHandle from DynamicArrayHandleCoordinateSystem
// but haven't been able to figure out what that is
//
struct GetVertexArray
{
template <typename ArrayHandleType>
VTKM_CONT
void operator()(ArrayHandleType array) const
{
this->GetVertexPortal(array.GetPortalConstControl());
}
private:
template <typename PortalType>
VTKM_CONT
void GetVertexPortal(const PortalType &portal) const
{
for (vtkm::Id index = 0; index < portal.GetNumberOfValues(); index++)
{
vertexArray.GetPortalControl().Set(index, portal.Get(index));
}
}
};
//
// Initialize the OpenGL state
//
void initializeGL()
{
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glEnable(GL_DEPTH_TEST);
glShadeModel(GL_SMOOTH);
float white[] = { 0.8f, 0.8f, 0.8f, 1.0f };
float black[] = { 0.0f, 0.0f, 0.0f, 1.0f };
float lightPos[] = { 10.0f, 10.0f, 10.5f, 1.0f };
glLightfv(GL_LIGHT0, GL_AMBIENT, white);
glLightfv(GL_LIGHT0, GL_DIFFUSE, white);
glLightfv(GL_LIGHT0, GL_SPECULAR, black);
glLightfv(GL_LIGHT0, GL_POSITION, lightPos);
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, 1);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_NORMALIZE);
glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
}
//
// Render the output using simple OpenGL
//
void displayCall()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective( 45.0f, 1.0f, 1.0f, 20.0f);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0.0f, 0.0f, 3.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f);
glLineWidth(3.0f);
glPushMatrix();
float rotationMatrix[16];
qrot.getRotMat(rotationMatrix);
glMultMatrixf(rotationMatrix);
glTranslatef(-0.5f, -0.5f, -0.5f);
// Get the cell set, coordinate system and coordinate data
vtkm::cont::CellSetSingleType<> cellSet;
tetDataSet.GetCellSet(0).CopyTo(cellSet);
// Need the actual vertex points from a static cast of the dynamic array but can't get it right
// So use cast and call on a functor that stores that dynamic array into static array we created
vertexArray.Allocate(numberOfInPoints);
vtkm::cont::CastAndCall(tetDataSet.GetCoordinateSystem(), GetVertexArray());
// Draw the five tetrahedra belonging to each hexadron
vtkm::Id tetra = 0;
vtkm::Float32 color[5][3] =
{
{1.0f, 0.0f, 0.0f},
{0.0f, 1.0f, 0.0f},
{0.0f, 0.0f, 1.0f},
{1.0f, 0.0f, 1.0f},
{1.0f, 1.0f, 0.0f}
};
for (vtkm::Id hex = 0; hex < cellsToDisplay; hex++)
{
for (vtkm::Id j = 0; j < 5; j++)
{
vtkm::Id indx = tetra % 5;
glColor3f(color[indx][0], color[indx][1], color[indx][2]);
// Get the indices of the vertices that make up this tetrahedron
vtkm::Vec<vtkm::Id, 4> tetIndices;
cellSet.GetIndices(tetra, tetIndices);
// Get the vertex points for this tetrahedron
vtkm::Vec<vtkm::Float64,3> pt0 = vertexArray.GetPortalConstControl().Get(tetIndices[0]);
vtkm::Vec<vtkm::Float64,3> pt1 = vertexArray.GetPortalConstControl().Get(tetIndices[1]);
vtkm::Vec<vtkm::Float64,3> pt2 = vertexArray.GetPortalConstControl().Get(tetIndices[2]);
vtkm::Vec<vtkm::Float64,3> pt3 = vertexArray.GetPortalConstControl().Get(tetIndices[3]);
// Draw the tetrahedron filled with alternating colors
glPolygonMode( GL_FRONT_AND_BACK, GL_FILL );
glBegin(GL_TRIANGLE_STRIP);
glVertex3d(pt0[0], pt0[1], pt0[2]);
glVertex3d(pt1[0], pt1[1], pt1[2]);
glVertex3d(pt2[0], pt2[1], pt2[2]);
glVertex3d(pt3[0], pt3[1], pt3[2]);
glVertex3d(pt0[0], pt0[1], pt0[2]);
glVertex3d(pt1[0], pt1[1], pt1[2]);
glEnd();
// Draw the tetrahedron wireframe
glColor3f(1.0f, 1.0f, 1.0f);
glPolygonMode( GL_FRONT_AND_BACK, GL_LINE );
glBegin(GL_TRIANGLE_STRIP);
glVertex3d(pt0[0], pt0[1], pt0[2]);
glVertex3d(pt1[0], pt1[1], pt1[2]);
glVertex3d(pt2[0], pt2[1], pt2[2]);
glVertex3d(pt3[0], pt3[1], pt3[2]);
glVertex3d(pt0[0], pt0[1], pt0[2]);
glVertex3d(pt1[0], pt1[1], pt1[2]);
glEnd();
tetra++;
}
}
glPopMatrix();
glutSwapBuffers();
}
// Allow rotations of the view
void mouseMove(int x, int y)
{
vtkm::Float32 dx = static_cast<vtkm::Float32>(x - lastx);
vtkm::Float32 dy = static_cast<vtkm::Float32>(y - lasty);
if (mouse_state == 0)
{
vtkm::Float32 pi = static_cast<float>(vtkm::Pi());
Quaternion newRotX;
newRotX.setEulerAngles(-0.2f * dx * pi / 180.0f, 0.0f, 0.0f);
qrot.mul(newRotX);
Quaternion newRotY;
newRotY.setEulerAngles(0.0f, 0.0f, -0.2f * dy * pi / 180.0f);
qrot.mul(newRotY);
}
lastx = x;
lasty = y;
glutPostRedisplay();
}
// Respond to mouse button
void mouseCall(int button, int state, int x, int y)
{
if (button == 0) mouse_state = state;
if ((button == 0) && (state == 0)) { lastx = x; lasty = y; }
}
// Tetrahedralize and render uniform grid example
int main(int argc, char* argv[])
{
std::cout << "TetrahedralizeUniformGrid Example" << std::endl;
std::cout << "Parameters are [xdim ydim zdim [# of cellsToDisplay]]" << std::endl << std::endl;
// Set the problem size and number of cells to display from command line
if (argc >= 4)
{
dims[0] = atoi(argv[1]);
dims[1] = atoi(argv[2]);
dims[2] = atoi(argv[3]);
cellsToDisplay = dims[0] * dims[1] * dims[2];
}
if (argc == 5) {
cellsToDisplay = atoi(argv[4]);
}
// Create the input uniform cell set
vtkm::cont::DataSet inDataSet = MakeTetrahedralizeTestDataSet(dims);
// Set number of cells and vertices in input dataset
numberOfInPoints = (dims[0] + 1) * (dims[1] + 1) * (dims[2] + 1);
// Create the output dataset explicit cell set with same coordinate system
vtkm::cont::CellSetSingleType<> cellSet("cells");
tetDataSet.AddCellSet(cellSet);
tetDataSet.AddCoordinateSystem(inDataSet.GetCoordinateSystem(0));
// Convert uniform hexahedra to tetrahedra
tetrahedralizeFilter = new vtkm::worklet::TetrahedralizeFilterUniformGrid<DeviceAdapter>
(inDataSet, tetDataSet);
tetrahedralizeFilter->Run();
// Render the output dataset of tets
lastx = lasty = 0;
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
glutInitWindowSize(1000, 1000);
glutCreateWindow("VTK-m Uniform Tetrahedralize");
initializeGL();
glutDisplayFunc(displayCall);
glutMotionFunc(mouseMove);
glutMouseFunc(mouseCall);
glutMainLoop();
return 0;
}
#if (defined(VTKM_GCC) || defined(VTKM_CLANG))
# pragma GCC diagnostic pop
#endif