vtk-m/vtkm/cont/CellSetExtrude.hxx
Allison Vacanti 5db762ee71 Refactor topology mappings to clarify meaning.
The `From` and `To` nomenclature for topology mapping has been confusing for
both users and developers, especially at lower levels where the intention of
mapping attributes from one element to another is easily conflated with the
concept of mapping indices (which maps in the exact opposite direction).

These identifiers have been renamed to `VisitTopology` and `IncidentTopology`
to clarify the direction of the mapping. The order in which these template
parameters are specified for `WorkletMapTopology` have also been reversed,
since eventually there may be more than one `IncidentTopology`, and having
`IncidentTopology` at the end will allow us to replace it with a variadic
template parameter pack in the future.

Other implementation details supporting these worklets, include `Fetch` tags,
`Connectivity` classes, and methods on the various `CellSet` classes (such as
`PrepareForInput` have also reversed their template arguments. These will need
to be cautiously updated.

The convenience implementations of `WorkletMapTopology` have been renamed for
clarity as follows:

```
WorkletMapPointToCell --> WorkletVisitCellsWithPoints
WorkletMapCellToPoint --> WorkletVisitPointsWithCells
```

The `ControlSignature` tags have been renamed as follows:

```
FieldInTo --> FieldInVisit
FieldInFrom --> FieldInMap
FromCount --> IncidentElementCount
FromIndices --> IncidentElementIndices
```
2019-08-06 11:27:26 -04:00

123 lines
4.4 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
//
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//============================================================================
#ifndef vtk_m_cont_CellSetExtrude_hxx
#define vtk_m_cont_CellSetExtrude_hxx
namespace
{
struct ComputeReverseMapping : public vtkm::worklet::WorkletMapField
{
using ControlSignature = void(FieldIn cellIndex, WholeArrayOut cellIds);
using ExecutionSignature = void(_1, _2);
VTKM_SUPPRESS_EXEC_WARNINGS
template <typename PortalType>
VTKM_EXEC void operator()(vtkm::Id cellId, PortalType&& pointIdValue) const
{
//3 as we are building the connectivity for triangles
const vtkm::Id offset = 3 * cellId;
pointIdValue.Set(offset, static_cast<vtkm::Int32>(cellId));
pointIdValue.Set(offset + 1, static_cast<vtkm::Int32>(cellId));
pointIdValue.Set(offset + 2, static_cast<vtkm::Int32>(cellId));
}
};
struct ComputePrevNode : public vtkm::worklet::WorkletMapField
{
typedef void ControlSignature(FieldIn nextNode, WholeArrayOut prevNodeArray);
typedef void ExecutionSignature(InputIndex, _1, _2);
template <typename PortalType>
VTKM_EXEC void operator()(vtkm::Id idx, vtkm::Int32 next, PortalType& prevs) const
{
prevs.Set(static_cast<vtkm::Id>(next), static_cast<vtkm::Int32>(idx));
}
};
} // anonymous namespace
namespace vtkm
{
namespace cont
{
template <typename Device>
VTKM_CONT void CellSetExtrude::BuildReverseConnectivity(Device)
{
vtkm::cont::Invoker invoke(Device{});
// create a mapping of where each key is the point id and the value
// is the cell id. We
const vtkm::Id numberOfPointsPerCell = 3;
const vtkm::Id rconnSize = this->NumberOfCellsPerPlane * numberOfPointsPerCell;
vtkm::cont::ArrayHandle<vtkm::Int32> pointIdKey;
vtkm::cont::DeviceAdapterAlgorithm<Device>::Copy(this->Connectivity, pointIdKey);
this->RConnectivity.Allocate(rconnSize);
invoke(ComputeReverseMapping{},
vtkm::cont::make_ArrayHandleCounting<vtkm::Id>(0, 1, this->NumberOfCellsPerPlane),
this->RConnectivity);
vtkm::cont::DeviceAdapterAlgorithm<Device>::SortByKey(pointIdKey, this->RConnectivity);
// now we can compute the counts and offsets
vtkm::cont::ArrayHandle<vtkm::Int32> reducedKeys;
vtkm::cont::DeviceAdapterAlgorithm<Device>::ReduceByKey(
pointIdKey,
vtkm::cont::make_ArrayHandleConstant(vtkm::Int32(1), static_cast<vtkm::Int32>(rconnSize)),
reducedKeys,
this->RCounts,
vtkm::Add{});
vtkm::cont::DeviceAdapterAlgorithm<Device>::ScanExclusive(this->RCounts, this->ROffsets);
// compute PrevNode from NextNode
this->PrevNode.Allocate(this->NextNode.GetNumberOfValues());
invoke(ComputePrevNode{}, this->NextNode, this->PrevNode);
this->ReverseConnectivityBuilt = true;
}
template <typename Device>
CellSetExtrude::ConnectivityP2C<Device> CellSetExtrude::PrepareForInput(
Device,
vtkm::TopologyElementTagCell,
vtkm::TopologyElementTagPoint) const
{
return ConnectivityP2C<Device>(this->Connectivity.PrepareForInput(Device{}),
this->NextNode.PrepareForInput(Device{}),
this->NumberOfCellsPerPlane,
this->NumberOfPointsPerPlane,
this->NumberOfPlanes,
this->IsPeriodic);
}
template <typename Device>
VTKM_CONT CellSetExtrude::ConnectivityC2P<Device> CellSetExtrude::PrepareForInput(
Device,
vtkm::TopologyElementTagPoint,
vtkm::TopologyElementTagCell) const
{
if (!this->ReverseConnectivityBuilt)
{
const_cast<CellSetExtrude*>(this)->BuildReverseConnectivity(Device{});
}
return ConnectivityC2P<Device>(this->RConnectivity.PrepareForInput(Device{}),
this->ROffsets.PrepareForInput(Device{}),
this->RCounts.PrepareForInput(Device{}),
this->PrevNode.PrepareForInput(Device{}),
this->NumberOfCellsPerPlane,
this->NumberOfPointsPerPlane,
this->NumberOfPlanes);
}
}
} // vtkm::cont
#endif