vtk-m/vtkm/worklet/testing/UnitTestCosmoTools.cxx
Haocheng LIU 8859636672 Merge worklet testing executables into a device dependent shared library
VTK-m has been updated to replace old per device worklet testing executables with a device
dependent shared library so that it's able to accept a device adapter
at runtime.
Meanwhile, it updates the testing infrastructure APIs. vtkm::cont::testing::Run
function would call ForceDevice when needed and if users need the device
adapter info at runtime, RunOnDevice function would pass the adapter into the functor.

Optional Parser is bumped from 1.3 to 1.7.
2018-11-23 10:13:56 -05:00

345 lines
12 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#include <vtkm/worklet/CosmoTools.h>
#include <vtkm/worklet/DispatcherMapField.h>
#include <vtkm/Pair.h>
#include <vtkm/cont/ArrayHandle.h>
#include <vtkm/cont/ArrayHandleIndex.h>
#include <vtkm/cont/ArrayHandleUniformPointCoordinates.h>
#include <vtkm/cont/CellSetExplicit.h>
#include <vtkm/cont/DataSet.h>
#include <vtkm/cont/DataSetBuilderExplicit.h>
#include <vtkm/cont/DataSetFieldAdd.h>
#include <vtkm/cont/testing/Testing.h>
#include <fstream>
namespace
{
template <typename T, typename Storage>
bool TestArrayHandle(const vtkm::cont::ArrayHandle<T, Storage>& ah,
const vtkm::cont::ArrayHandle<T, Storage>& expected,
vtkm::Id size)
{
if (size != ah.GetNumberOfValues())
{
return false;
}
for (vtkm::Id i = 0; i < size; ++i)
{
if (ah.GetPortalConstControl().Get(i) != expected.GetPortalConstControl().Get(i))
{
return false;
}
}
return true;
}
//
// Test 2D explicit dataset of particles
//
vtkm::cont::DataSet MakeCosmo_2DDataSet_0()
{
vtkm::cont::DataSet dataSet;
vtkm::cont::DataSetBuilderExplicit dsb;
vtkm::cont::DataSetFieldAdd dsf;
// Coordinates
const int nVerts = 17;
const int nCells = 17;
using CoordType = vtkm::Vec<vtkm::Float32, 3>;
std::vector<CoordType> coords(nVerts);
coords[0] = CoordType(1, 1, 0);
coords[1] = CoordType(1, 2, 0);
coords[2] = CoordType(2, 6, 0);
coords[3] = CoordType(1, 3, 0);
coords[4] = CoordType(3, 5, 0);
coords[5] = CoordType(1, 4, 0);
coords[6] = CoordType(1, 5, 0);
coords[7] = CoordType(3, 6, 0);
coords[8] = CoordType(2, 3, 0);
coords[9] = CoordType(3, 3, 0);
coords[10] = CoordType(4, 3, 0);
coords[11] = CoordType(3, 7, 0);
coords[12] = CoordType(5, 2, 0);
coords[13] = CoordType(5, 3, 0);
coords[14] = CoordType(4, 6, 0);
coords[15] = CoordType(5, 4, 0);
coords[16] = CoordType(6, 3, 0);
// Connectivity
std::vector<vtkm::UInt8> shapes;
std::vector<vtkm::IdComponent> numindices;
std::vector<vtkm::Id> conn;
for (vtkm::Id pt = 0; pt < nCells; pt++)
{
shapes.push_back(vtkm::CELL_SHAPE_VERTEX);
numindices.push_back(1);
conn.push_back(pt);
}
dataSet = dsb.Create(coords, shapes, numindices, conn, "coordinates", "cells");
// Field data
vtkm::Float32 xLocation[nCells] = { 1, 1, 2, 1, 3, 1, 1, 3, 2, 3, 4, 3, 5, 5, 4, 5, 6 };
vtkm::Float32 yLocation[nCells] = { 1, 2, 6, 3, 5, 4, 5, 6, 3, 3, 3, 7, 2, 3, 6, 4, 3 };
vtkm::Float32 zLocation[nCells] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
vtkm::Id haloId[nCells] = { 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 2, 0, 0 };
vtkm::Id mbp[nCells] = { 8, 8, 7, 8, 7, 8, 8, 7, 8, 8, 8, 7, 8, 8, 7, 8, 8 };
dsf.AddCellField(dataSet, "xLocation", xLocation, nCells);
dsf.AddCellField(dataSet, "yLocation", yLocation, nCells);
dsf.AddCellField(dataSet, "zLocation", zLocation, nCells);
dsf.AddCellField(dataSet, "haloId", haloId, nCells);
dsf.AddCellField(dataSet, "mbp", mbp, nCells);
return dataSet;
}
//
// Test 3D explicit dataset of particles
//
vtkm::cont::DataSet MakeCosmo_3DDataSet_0()
{
vtkm::cont::DataSet dataSet;
vtkm::cont::DataSetBuilderExplicit dsb;
vtkm::cont::DataSetFieldAdd dsf;
// Coordinates
const int nVerts = 14;
const int nCells = 14;
using CoordType = vtkm::Vec<vtkm::Float32, 3>;
std::vector<CoordType> coords(nVerts);
coords[0] = CoordType(20.8125f, 10.8864f, 0.309784f);
coords[1] = CoordType(29.6871f, 15.4445f, 1.55953f);
coords[2] = CoordType(29.724f, 15.4766f, 1.51077f);
coords[3] = CoordType(29.6783f, 15.4766f, 1.5324f);
coords[4] = CoordType(29.7051f, 15.5052f, 1.52008f);
coords[5] = CoordType(20.8172f, 10.8534f, 0.23461f);
coords[6] = CoordType(20.8665f, 10.8679f, 0.254398f);
coords[7] = CoordType(20.8271f, 10.8677f, 0.234255f);
coords[8] = CoordType(20.8592f, 10.9505f, 0.248716f);
coords[9] = CoordType(20.819f, 10.8949f, 0.304834f);
coords[10] = CoordType(29.708f, 15.4251f, 1.53951f);
coords[11] = CoordType(20.8829f, 10.9144f, 0.261517f);
coords[12] = CoordType(20.8379f, 10.877f, 0.27677f);
coords[13] = CoordType(29.7278f, 15.5267f, 1.50798f);
// Connectivity
std::vector<vtkm::UInt8> shapes;
std::vector<vtkm::IdComponent> numindices;
std::vector<vtkm::Id> conn;
for (vtkm::Id pt = 0; pt < nCells; pt++)
{
shapes.push_back(vtkm::CELL_SHAPE_VERTEX);
numindices.push_back(1);
conn.push_back(pt);
}
dataSet = dsb.Create(coords, shapes, numindices, conn, "coordinates", "cells");
// Field data
vtkm::Float32 xLocation[nCells] = { 20.8125f, 29.6871f, 29.724f, 29.6783f, 29.7051f,
20.8172f, 20.8665f, 20.8271f, 20.8592f, 20.819f,
29.708f, 20.8829f, 20.8379f, 29.7278f };
vtkm::Float32 yLocation[nCells] = { 10.8864f, 15.4445f, 15.4766f, 15.4766f, 15.5052f,
10.8534f, 10.8679f, 10.8677f, 10.9505f, 10.8949f,
15.4251f, 10.9144f, 10.877f, 15.5267f };
vtkm::Float32 zLocation[nCells] = { 0.309784f, 1.55953f, 1.51077f, 1.5324f, 1.52008f,
0.23461f, 0.254398f, 0.234255f, 0.248716f, 0.304834f,
1.53951f, 0.261517f, 0.27677f, 1.50798f };
vtkm::Id haloId[nCells] = { 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1 };
vtkm::Id mbp[nCells] = { 9, 4, 4, 4, 4, 9, 9, 9, 9, 9, 4, 9, 9, 4 };
dsf.AddCellField(dataSet, "xLocation", xLocation, nCells);
dsf.AddCellField(dataSet, "yLocation", yLocation, nCells);
dsf.AddCellField(dataSet, "zLocation", zLocation, nCells);
dsf.AddCellField(dataSet, "haloId", haloId, nCells);
dsf.AddCellField(dataSet, "mbp", mbp, nCells);
return dataSet;
}
} // namespace
////////////////////////////////////////////////////////////////////////////////////
//
// Create an explicit 2D particle set and find halos and minimum potential particle of each halo
//
////////////////////////////////////////////////////////////////////////////////////
void TestCosmo_2DHaloFind()
{
std::cout << "Testing Halo Finder 2D" << std::endl;
// Create the input 2D particle dataset
vtkm::cont::DataSet dataSet = MakeCosmo_2DDataSet_0();
vtkm::Id nCells = dataSet.GetCellSet(0).GetNumberOfCells();
vtkm::cont::ArrayHandle<vtkm::Float32> xLocArray;
vtkm::cont::ArrayHandle<vtkm::Float32> yLocArray;
vtkm::cont::ArrayHandle<vtkm::Float32> zLocArray;
vtkm::cont::ArrayHandle<vtkm::Id> haloIdArray;
vtkm::cont::ArrayHandle<vtkm::Id> mbpArray;
dataSet.GetField("xLocation").GetData().CopyTo(xLocArray);
dataSet.GetField("yLocation").GetData().CopyTo(yLocArray);
dataSet.GetField("zLocation").GetData().CopyTo(zLocArray);
dataSet.GetField("haloId").GetData().CopyTo(haloIdArray);
dataSet.GetField("mbp").GetData().CopyTo(mbpArray);
// Output haloId, MBP, potential per particle
vtkm::cont::ArrayHandle<vtkm::Id> resultHaloId;
vtkm::cont::ArrayHandle<vtkm::Id> resultMBP;
vtkm::cont::ArrayHandle<vtkm::Float32> resultPot;
// Create the worklet and run it
vtkm::Id minHaloSize = 3;
vtkm::Float32 linkingLength = 1.0f;
vtkm::Float32 particleMass = 1.0f;
vtkm::worklet::CosmoTools cosmoTools;
cosmoTools.RunHaloFinder(xLocArray,
yLocArray,
zLocArray,
nCells,
particleMass,
minHaloSize,
linkingLength,
resultHaloId,
resultMBP,
resultPot);
VTKM_TEST_ASSERT(TestArrayHandle(haloIdArray, resultHaloId, nCells), "Incorrect Halo Ids");
VTKM_TEST_ASSERT(TestArrayHandle(mbpArray, resultMBP, nCells), "Incorrect MBP Ids");
}
////////////////////////////////////////////////////////////////////////////////////
//
// Create an explicit 3D particle set and find halos and minimum potential particle of each halo
//
////////////////////////////////////////////////////////////////////////////////////
void TestCosmo_3DHaloFind()
{
std::cout << "Testing Halo Finder 3D" << std::endl;
// Create the input 3D particle dataset
vtkm::cont::DataSet dataSet = MakeCosmo_3DDataSet_0();
vtkm::Id nCells = dataSet.GetCellSet(0).GetNumberOfCells();
vtkm::cont::ArrayHandle<vtkm::Float32> xLocArray;
vtkm::cont::ArrayHandle<vtkm::Float32> yLocArray;
vtkm::cont::ArrayHandle<vtkm::Float32> zLocArray;
vtkm::cont::ArrayHandle<vtkm::Id> haloIdArray;
vtkm::cont::ArrayHandle<vtkm::Id> mbpArray;
dataSet.GetField("xLocation").GetData().CopyTo(xLocArray);
dataSet.GetField("yLocation").GetData().CopyTo(yLocArray);
dataSet.GetField("zLocation").GetData().CopyTo(zLocArray);
dataSet.GetField("haloId").GetData().CopyTo(haloIdArray);
dataSet.GetField("mbp").GetData().CopyTo(mbpArray);
// Output haloId, MBP, potential per particle
vtkm::cont::ArrayHandle<vtkm::Id> resultHaloId;
vtkm::cont::ArrayHandle<vtkm::Id> resultMBP;
vtkm::cont::ArrayHandle<vtkm::Float32> resultPot;
// Create the worklet and run it
vtkm::Id minHaloSize = 3;
vtkm::Float32 linkingLength = 0.2f;
vtkm::Float32 particleMass = 1.0f;
vtkm::worklet::CosmoTools cosmoTools;
cosmoTools.RunHaloFinder(xLocArray,
yLocArray,
zLocArray,
nCells,
particleMass,
minHaloSize,
linkingLength,
resultHaloId,
resultMBP,
resultPot);
VTKM_TEST_ASSERT(TestArrayHandle(haloIdArray, resultHaloId, nCells), "Incorrect Halo Ids");
VTKM_TEST_ASSERT(TestArrayHandle(mbpArray, resultMBP, nCells), "Incorrect MBP Ids");
}
////////////////////////////////////////////////////////////////////////////////////
//
// Create an explicit 3D particle set and find halos and minimum potential particle of each halo
//
////////////////////////////////////////////////////////////////////////////////////
void TestCosmo_3DCenterFind()
{
std::cout << "Testing Center Finder 3D" << std::endl;
// Create the input 3D particle dataset
vtkm::cont::DataSet dataSet = MakeCosmo_3DDataSet_0();
vtkm::Id nCells = dataSet.GetCellSet(0).GetNumberOfCells();
vtkm::cont::ArrayHandle<vtkm::Float32> xLocArray;
vtkm::cont::ArrayHandle<vtkm::Float32> yLocArray;
vtkm::cont::ArrayHandle<vtkm::Float32> zLocArray;
vtkm::cont::ArrayHandle<vtkm::Id> haloIdArray;
dataSet.GetField("xLocation").GetData().CopyTo(xLocArray);
dataSet.GetField("yLocation").GetData().CopyTo(yLocArray);
dataSet.GetField("zLocation").GetData().CopyTo(zLocArray);
// Output haloId MBP particleId pairs array
vtkm::Pair<vtkm::Id, vtkm::Float32> nxnResult;
vtkm::Pair<vtkm::Id, vtkm::Float32> mxnResult;
// Create the worklet and run it
vtkm::Float32 particleMass = 1.0f;
vtkm::worklet::CosmoTools cosmoTools;
cosmoTools.RunMBPCenterFinderNxN(
xLocArray, yLocArray, zLocArray, nCells, particleMass, nxnResult);
cosmoTools.RunMBPCenterFinderMxN(
xLocArray, yLocArray, zLocArray, nCells, particleMass, mxnResult);
VTKM_TEST_ASSERT(test_equal(nxnResult.first, mxnResult.first),
"NxN and MxN got different results");
}
void TestCosmoTools()
{
TestCosmo_2DHaloFind();
TestCosmo_3DHaloFind();
TestCosmo_3DCenterFind();
}
int UnitTestCosmoTools(int argc, char* argv[])
{
return vtkm::cont::testing::Testing::Run(TestCosmoTools, argc, argv);
}