vtk-m/vtkm/worklet/testing/UnitTestPointGradient.cxx
Haocheng LIU 8859636672 Merge worklet testing executables into a device dependent shared library
VTK-m has been updated to replace old per device worklet testing executables with a device
dependent shared library so that it's able to accept a device adapter
at runtime.
Meanwhile, it updates the testing infrastructure APIs. vtkm::cont::testing::Run
function would call ForceDevice when needed and if users need the device
adapter info at runtime, RunOnDevice function would pass the adapter into the functor.

Optional Parser is bumped from 1.3 to 1.7.
2018-11-23 10:13:56 -05:00

231 lines
9.2 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#include <vtkm/worklet/DispatcherMapTopology.h>
#include <vtkm/worklet/Gradient.h>
#include <vtkm/cont/testing/MakeTestDataSet.h>
#include <vtkm/cont/testing/Testing.h>
namespace
{
void TestPointGradientUniform2D()
{
std::cout << "Testing PointGradient Worklet on 2D structured data" << std::endl;
vtkm::cont::testing::MakeTestDataSet testDataSet;
vtkm::cont::DataSet dataSet = testDataSet.Make2DUniformDataSet0();
vtkm::cont::ArrayHandle<vtkm::Float32> fieldArray;
dataSet.GetField("pointvar").GetData().CopyTo(fieldArray);
vtkm::worklet::PointGradient gradient;
auto result = gradient.Run(dataSet.GetCellSet(), dataSet.GetCoordinateSystem(), fieldArray);
vtkm::Vec<vtkm::Float32, 3> expected[2] = { { 10, 30, 0 }, { 10, 30, 0 } };
for (int i = 0; i < 2; ++i)
{
VTKM_TEST_ASSERT(test_equal(result.GetPortalConstControl().Get(i), expected[i]),
"Wrong result for PointGradient worklet on 2D uniform data");
}
}
void TestPointGradientUniform3D()
{
std::cout << "Testing PointGradient Worklet on 3D structured data" << std::endl;
vtkm::cont::testing::MakeTestDataSet testDataSet;
vtkm::cont::DataSet dataSet = testDataSet.Make3DUniformDataSet0();
vtkm::cont::ArrayHandle<vtkm::Float32> fieldArray;
dataSet.GetField("pointvar").GetData().CopyTo(fieldArray);
vtkm::worklet::PointGradient gradient;
auto result = gradient.Run(dataSet.GetCellSet(), dataSet.GetCoordinateSystem(), fieldArray);
vtkm::Vec<vtkm::Float32, 3> expected[4] = {
{ 10.0f, 30.f, 60.1f },
{ 10.0f, 30.1f, 60.1f },
{ 10.0f, 30.1f, 60.2f },
{ 10.1f, 30.f, 60.2f },
};
for (int i = 0; i < 4; ++i)
{
VTKM_TEST_ASSERT(test_equal(result.GetPortalConstControl().Get(i), expected[i]),
"Wrong result for PointGradient worklet on 3D uniform data");
}
}
void TestPointGradientUniform3DWithVectorField()
{
std::cout << "Testing PointGradient Worklet with a vector field on 3D structured data"
<< std::endl;
vtkm::cont::testing::MakeTestDataSet testDataSet;
vtkm::cont::DataSet dataSet = testDataSet.Make3DUniformDataSet0();
//Verify that we can compute the gradient of a 3 component vector
const int nVerts = 18;
vtkm::Float64 vars[nVerts] = { 10.1, 20.1, 30.1, 40.1, 50.2, 60.2, 70.2, 80.2, 90.3,
100.3, 110.3, 120.3, 130.4, 140.4, 150.4, 160.4, 170.5, 180.5 };
std::vector<vtkm::Vec<vtkm::Float64, 3>> vec(18);
for (std::size_t i = 0; i < vec.size(); ++i)
{
vec[i] = vtkm::make_Vec(vars[i], vars[i], vars[i]);
}
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float64, 3>> input = vtkm::cont::make_ArrayHandle(vec);
vtkm::worklet::PointGradient gradient;
auto result = gradient.Run(dataSet.GetCellSet(), dataSet.GetCoordinateSystem(), input);
vtkm::Vec<vtkm::Vec<vtkm::Float64, 3>, 3> expected[4] = {
{ { 10.0, 10.0, 10.0 }, { 30.0, 30.0, 30.0 }, { 60.1, 60.1, 60.1 } },
{ { 10.0, 10.0, 10.0 }, { 30.1, 30.1, 30.1 }, { 60.1, 60.1, 60.1 } },
{ { 10.0, 10.0, 10.0 }, { 30.1, 30.1, 30.1 }, { 60.2, 60.2, 60.2 } },
{ { 10.1, 10.1, 10.1 }, { 30.0, 30.0, 30.0 }, { 60.2, 60.2, 60.2 } }
};
for (int i = 0; i < 4; ++i)
{
vtkm::Vec<vtkm::Vec<vtkm::Float64, 3>, 3> e = expected[i];
vtkm::Vec<vtkm::Vec<vtkm::Float64, 3>, 3> r = result.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(test_equal(e[0], r[0]),
"Wrong result for vec field PointGradient worklet on 3D uniform data");
VTKM_TEST_ASSERT(test_equal(e[1], r[1]),
"Wrong result for vec field PointGradient worklet on 3D uniform data");
VTKM_TEST_ASSERT(test_equal(e[2], r[2]),
"Wrong result for vec field PointGradient worklet on 3D uniform data");
}
}
void TestPointGradientUniform3DWithVectorField2()
{
std::cout << "Testing PointGradient Worklet with a vector field on 3D structured data"
<< std::endl
<< "Disabling Gradient computation and enabling Divergence, Vorticity, and QCriterion"
<< std::endl;
vtkm::cont::testing::MakeTestDataSet testDataSet;
vtkm::cont::DataSet dataSet = testDataSet.Make3DUniformDataSet0();
//Verify that we can compute the gradient of a 3 component vector
const int nVerts = 18;
vtkm::Float64 vars[nVerts] = { 10.1, 20.1, 30.1, 40.1, 50.2, 60.2, 70.2, 80.2, 90.3,
100.3, 110.3, 120.3, 130.4, 140.4, 150.4, 160.4, 170.5, 180.5 };
std::vector<vtkm::Vec<vtkm::Float64, 3>> vec(18);
for (std::size_t i = 0; i < vec.size(); ++i)
{
vec[i] = vtkm::make_Vec(vars[i], vars[i], vars[i]);
}
vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float64, 3>> input = vtkm::cont::make_ArrayHandle(vec);
vtkm::worklet::GradientOutputFields<vtkm::Vec<vtkm::Float64, 3>> extraOutput;
extraOutput.SetComputeGradient(false);
extraOutput.SetComputeDivergence(true);
extraOutput.SetComputeVorticity(true);
extraOutput.SetComputeQCriterion(true);
vtkm::worklet::PointGradient gradient;
auto result =
gradient.Run(dataSet.GetCellSet(), dataSet.GetCoordinateSystem(), input, extraOutput);
//Verify that the result is 0 size
VTKM_TEST_ASSERT((result.GetNumberOfValues() == 0), "Gradient field shouldn't be generated");
//Verify that the extra arrays are the correct size
VTKM_TEST_ASSERT((extraOutput.Gradient.GetNumberOfValues() == 0),
"Gradient field shouldn't be generated");
VTKM_TEST_ASSERT((extraOutput.Divergence.GetNumberOfValues() == nVerts),
"Divergence field should be generated");
VTKM_TEST_ASSERT((extraOutput.Vorticity.GetNumberOfValues() == nVerts),
"Vorticity field should be generated");
VTKM_TEST_ASSERT((extraOutput.QCriterion.GetNumberOfValues() == nVerts),
"QCriterion field should be generated");
vtkm::Vec<vtkm::Vec<vtkm::Float64, 3>, 3> expected_gradients[4] = {
{ { 10.0, 10.0, 10.0 }, { 30.0, 30.0, 30.0 }, { 60.1, 60.1, 60.1 } },
{ { 10.0, 10.0, 10.0 }, { 30.1, 30.1, 30.1 }, { 60.1, 60.1, 60.1 } },
{ { 10.0, 10.0, 10.0 }, { 30.1, 30.1, 30.1 }, { 60.2, 60.2, 60.2 } },
{ { 10.1, 10.1, 10.1 }, { 30.0, 30.0, 30.0 }, { 60.2, 60.2, 60.2 } }
};
for (int i = 0; i < 4; ++i)
{
vtkm::Vec<vtkm::Vec<vtkm::Float64, 3>, 3> eg = expected_gradients[i];
vtkm::Float64 d = extraOutput.Divergence.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(test_equal((eg[0][0] + eg[1][1] + eg[2][2]), d),
"Wrong result for Divergence on 3D uniform data");
vtkm::Vec<vtkm::Float64, 3> ev(eg[1][2] - eg[2][1], eg[2][0] - eg[0][2], eg[0][1] - eg[1][0]);
vtkm::Vec<vtkm::Float64, 3> v = extraOutput.Vorticity.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(test_equal(ev, v), "Wrong result for Vorticity on 3D uniform data");
const vtkm::Vec<vtkm::Float64, 3> es(
eg[1][2] + eg[2][1], eg[2][0] + eg[0][2], eg[0][1] + eg[1][0]);
const vtkm::Vec<vtkm::Float64, 3> ed(eg[0][0], eg[1][1], eg[2][2]);
//compute QCriterion
vtkm::Float64 qcriterion =
((vtkm::Dot(ev, ev) / 2.0f) - (vtkm::Dot(ed, ed) + (vtkm::Dot(es, es) / 2.0f))) / 2.0f;
vtkm::Float64 q = extraOutput.QCriterion.GetPortalConstControl().Get(i);
VTKM_TEST_ASSERT(
test_equal(qcriterion, q),
"Wrong result for QCriterion field of PointGradient worklet on 3D uniform data");
}
}
void TestPointGradientExplicit()
{
std::cout << "Testing PointGradient Worklet on Explicit data" << std::endl;
vtkm::cont::testing::MakeTestDataSet testDataSet;
vtkm::cont::DataSet dataSet = testDataSet.Make3DExplicitDataSet0();
vtkm::cont::ArrayHandle<vtkm::Float32> fieldArray;
dataSet.GetField("pointvar").GetData().CopyTo(fieldArray);
vtkm::worklet::PointGradient gradient;
auto result = gradient.Run(dataSet.GetCellSet(), dataSet.GetCoordinateSystem(), fieldArray);
vtkm::Vec<vtkm::Float32, 3> expected[2] = { { 10.f, 10.1f, 0.0f }, { 10.f, 10.1f, 0.0f } };
for (int i = 0; i < 2; ++i)
{
VTKM_TEST_ASSERT(test_equal(result.GetPortalConstControl().Get(i), expected[i]),
"Wrong result for PointGradient worklet on 3D explicit data");
}
}
void TestPointGradient()
{
TestPointGradientUniform2D();
TestPointGradientUniform3D();
TestPointGradientUniform3DWithVectorField();
TestPointGradientUniform3DWithVectorField2();
TestPointGradientExplicit();
}
}
int UnitTestPointGradient(int argc, char* argv[])
{
return vtkm::cont::testing::Testing::Run(TestPointGradient, argc, argv);
}