vtk-m/examples/tetrahedra/TriangulateUniformGrid.cxx
Tom Fogal 55be1fcbb2 examples: ensure cleanup occurs before main ends.
Else the implicit context in the CUDA driver may destroy itself
before the destructors for globals/statics run, and we could try
to e.g. cudaFree without a valid context.
2017-02-15 10:32:20 -08:00

235 lines
7.3 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 Sandia Corporation.
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#ifndef VTKM_DEVICE_ADAPTER
#define VTKM_DEVICE_ADAPTER VTKM_DEVICE_ADAPTER_SERIAL
#endif
#include <vtkm/worklet/TetrahedralizeUniformGrid.h>
#include <vtkm/worklet/DispatcherMapField.h>
#include <vtkm/Math.h>
#include <vtkm/cont/DataSet.h>
#include <vtkm/cont/testing/Testing.h>
//Suppress warnings about glut being deprecated on OSX
#if (defined(VTKM_GCC) || defined(VTKM_CLANG))
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
#if defined (__APPLE__)
# include <GLUT/glut.h>
#else
# include <GL/glut.h>
#endif
typedef VTKM_DEFAULT_DEVICE_ADAPTER_TAG DeviceAdapter;
// Default size of the example
static vtkm::Id2 dims(4,4);
static vtkm::Id cellsToDisplay = 16;
static vtkm::Id numberOfInPoints;
// Takes input uniform grid and outputs unstructured grid of triangles
static vtkm::worklet::TetrahedralizeFilterUniformGrid<DeviceAdapter> *tetrahedralizeFilter;
static vtkm::cont::DataSet tetDataSet;
// Point location of vertices from a CastAndCall but needs a static cast eventually
static vtkm::cont::ArrayHandle<vtkm::Vec<vtkm::Float64, 3> > vertexArray;
//
// Construct an input data set with uniform grid of indicated dimensions, origin and spacing
//
vtkm::cont::DataSet MakeTriangulateTestDataSet(vtkm::Id2 dim)
{
vtkm::cont::DataSet dataSet;
// Place uniform grid on a set physical space so OpenGL drawing is easier
const vtkm::Id3 vdims(dim[0] + 1, dim[1] + 1, 1);
const vtkm::Vec<vtkm::Float32, 3> origin = vtkm::make_Vec(0.0f, 0.0f, 0.0f);
const vtkm::Vec<vtkm::Float32, 3> spacing = vtkm::make_Vec(
1.0f/static_cast<vtkm::Float32>(dim[0]),
1.0f/static_cast<vtkm::Float32>(dim[1]),
1.0f/static_cast<vtkm::Float32>(dim[2]));
// Generate coordinate system
vtkm::cont::ArrayHandleUniformPointCoordinates coordinates(vdims, origin, spacing);
dataSet.AddCoordinateSystem(
vtkm::cont::CoordinateSystem("coordinates", coordinates));
// Generate cell set
vtkm::cont::CellSetStructured<2> cellSet("cells");
cellSet.SetPointDimensions(vtkm::make_Vec(dim[0] + 1, dim[1] + 1));
dataSet.AddCellSet(cellSet);
return dataSet;
}
//
// Functor to retrieve vertex locations from the CoordinateSystem
// Actually need a static cast to ArrayHandle from DynamicArrayHandleCoordinateSystem
// but haven't been able to figure out what that is
//
struct GetVertexArray
{
template <typename ArrayHandleType>
VTKM_CONT
void operator()(ArrayHandleType array) const
{
this->GetVertexPortal(array.GetPortalConstControl());
}
private:
template <typename PortalType>
VTKM_CONT
void GetVertexPortal(const PortalType &portal) const
{
for (vtkm::Id index = 0; index < portal.GetNumberOfValues(); index++)
{
vertexArray.GetPortalControl().Set(index, portal.Get(index));
}
}
};
//
// Initialize the OpenGL state
//
void initializeGL()
{
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-0.5f, 1.5f, -0.5f, 1.5f, -1.0f, 1.0f);
}
//
// Render the output using simple OpenGL
//
void displayCall()
{
glClear(GL_COLOR_BUFFER_BIT);
glLineWidth(3.0f);
// Get the cellset, coordinate system and coordinate data
vtkm::cont::CellSetSingleType<> cellSet;
tetDataSet.GetCellSet(0).CopyTo(cellSet);
// Need the actual vertex points from a static cast of the dynamic array but can't get it right
// So use cast and call on a functor that stores that dynamic array into static array we created
vertexArray.Allocate(numberOfInPoints);
vtkm::cont::CastAndCall(tetDataSet.GetCoordinateSystem(), GetVertexArray());
// Draw the two triangles belonging to each quad
vtkm::Id triangle = 0;
vtkm::Float32 color[4][3] =
{
{1.0f, 0.0f, 0.0f},
{0.0f, 1.0f, 0.0f},
{0.0f, 0.0f, 1.0f},
{1.0f, 1.0f, 0.0f}
};
for (vtkm::Id quad = 0; quad < cellsToDisplay; quad++)
{
for (vtkm::Id j = 0; j < 2; j++)
{
vtkm::Id indx = triangle % 4;
glColor3f(color[indx][0], color[indx][1], color[indx][2]);
// Get the indices of the vertices that make up this triangle
vtkm::Vec<vtkm::Id, 3> triIndices;
cellSet.GetIndices(triangle, triIndices);
// Get the vertex points for this triangle
vtkm::Vec<vtkm::Float64,3> pt0 = vertexArray.GetPortalConstControl().Get(triIndices[0]);
vtkm::Vec<vtkm::Float64,3> pt1 = vertexArray.GetPortalConstControl().Get(triIndices[1]);
vtkm::Vec<vtkm::Float64,3> pt2 = vertexArray.GetPortalConstControl().Get(triIndices[2]);
// Draw the triangle filled with alternating colors
glPolygonMode( GL_FRONT_AND_BACK, GL_FILL );
glBegin(GL_TRIANGLES);
glVertex3d(pt0[0], pt0[1], pt0[2]);
glVertex3d(pt1[0], pt1[1], pt1[2]);
glVertex3d(pt2[0], pt2[1], pt2[2]);
glEnd();
triangle++;
}
}
glFlush();
}
// Tetrahedralize and render uniform grid example
int main(int argc, char* argv[])
{
std::cout << "TrianguleUniformGrid Example" << std::endl;
std::cout << "Parameters are [xdim ydim [# of cellsToDisplay]]" << std::endl << std::endl;
// Set the problem size and number of cells to display from command line
if (argc >= 3)
{
dims[0] = atoi(argv[1]);
dims[1] = atoi(argv[2]);
cellsToDisplay = dims[0] * dims[1];
}
if (argc == 4)
{
cellsToDisplay = atoi(argv[3]);
}
numberOfInPoints = (dims[0] + 1) * (dims[1] + 1);
// Create the input uniform cell set
vtkm::cont::DataSet inDataSet = MakeTriangulateTestDataSet(dims);
// Create the output dataset explicit cell set with same coordinate system
vtkm::cont::CellSetSingleType<> cellSet("cells");
tetDataSet.AddCellSet(cellSet);
tetDataSet.AddCoordinateSystem(inDataSet.GetCoordinateSystem(0));
// Convert uniform hexahedra to tetrahedra
tetrahedralizeFilter = new vtkm::worklet::TetrahedralizeFilterUniformGrid<DeviceAdapter>
(inDataSet, tetDataSet);
tetrahedralizeFilter->Run();
// Render the output dataset of tets
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE);
glutInitWindowSize(1000, 1000);
glutInitWindowPosition(100, 100);
glutCreateWindow("VTK-m Uniform Triangulate");
initializeGL();
glutDisplayFunc(displayCall);
glutMainLoop();
delete tetrahedralizeFilter;
tetDataSet.Clear();
vertexArray.ReleaseResources();
return 0;
}
#if (defined(VTKM_GCC) || defined(VTKM_CLANG))
# pragma GCC diagnostic pop
#endif