vtk-m/vtkm/worklet/StreamLineUniformGrid.h
Haocheng LIU 8859636672 Merge worklet testing executables into a device dependent shared library
VTK-m has been updated to replace old per device worklet testing executables with a device
dependent shared library so that it's able to accept a device adapter
at runtime.
Meanwhile, it updates the testing infrastructure APIs. vtkm::cont::testing::Run
function would call ForceDevice when needed and if users need the device
adapter info at runtime, RunOnDevice function would pass the adapter into the functor.

Optional Parser is bumped from 1.3 to 1.7.
2018-11-23 10:13:56 -05:00

433 lines
16 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
#ifndef vtk_m_worklet_StreamLineUniformGrid_h
#define vtk_m_worklet_StreamLineUniformGrid_h
#include <vtkm/cont/Algorithm.h>
#include <vtkm/cont/ArrayHandle.h>
#include <vtkm/cont/ArrayHandleCounting.h>
#include <vtkm/cont/CellSetExplicit.h>
#include <vtkm/cont/CellSetStructured.h>
#include <vtkm/cont/DataSet.h>
#include <vtkm/cont/DeviceAdapter.h>
#include <vtkm/cont/Field.h>
#include <vtkm/worklet/DispatcherMapField.h>
#include <vtkm/worklet/ScatterUniform.h>
#include <vtkm/worklet/WorkletMapField.h>
namespace vtkm
{
// Take this out when defined in CellShape.h
const vtkm::UInt8 CELL_SHAPE_POLY_LINE = 4;
namespace worklet
{
namespace internal
{
enum StreamLineMode
{
FORWARD = 0,
BACKWARD = 1,
BOTH = 2
};
// Trilinear interpolation to calculate vector data at position
template <typename FieldType, typename PortalType>
VTKM_EXEC vtkm::Vec<FieldType, 3> VecDataAtPos(vtkm::Vec<FieldType, 3> pos,
const vtkm::Id3& vdims,
const vtkm::Id& planesize,
const vtkm::Id& rowsize,
const PortalType& vecdata)
{
// Adjust initial position to be within bounding box of grid
for (vtkm::IdComponent d = 0; d < 3; d++)
{
if (pos[d] < 0.0f)
pos[d] = 0.0f;
if (pos[d] > static_cast<FieldType>(vdims[d] - 1))
pos[d] = static_cast<FieldType>(vdims[d] - 1);
}
// Set the eight corner indices with no wraparound
vtkm::Id3 idx000, idx001, idx010, idx011, idx100, idx101, idx110, idx111;
idx000[0] = static_cast<vtkm::Id>(floor(pos[0]));
idx000[1] = static_cast<vtkm::Id>(floor(pos[1]));
idx000[2] = static_cast<vtkm::Id>(floor(pos[2]));
idx001 = idx000;
idx001[0] = (idx001[0] + 1) <= vdims[0] - 1 ? idx001[0] + 1 : vdims[0] - 1;
idx010 = idx000;
idx010[1] = (idx010[1] + 1) <= vdims[1] - 1 ? idx010[1] + 1 : vdims[1] - 1;
idx011 = idx010;
idx011[0] = (idx011[0] + 1) <= vdims[0] - 1 ? idx011[0] + 1 : vdims[0] - 1;
idx100 = idx000;
idx100[2] = (idx100[2] + 1) <= vdims[2] - 1 ? idx100[2] + 1 : vdims[2] - 1;
idx101 = idx100;
idx101[0] = (idx101[0] + 1) <= vdims[0] - 1 ? idx101[0] + 1 : vdims[0] - 1;
idx110 = idx100;
idx110[1] = (idx110[1] + 1) <= vdims[1] - 1 ? idx110[1] + 1 : vdims[1] - 1;
idx111 = idx110;
idx111[0] = (idx111[0] + 1) <= vdims[0] - 1 ? idx111[0] + 1 : vdims[0] - 1;
// Get the vecdata at the eight corners
vtkm::Vec<FieldType, 3> v000, v001, v010, v011, v100, v101, v110, v111;
v000 = vecdata.Get(idx000[2] * planesize + idx000[1] * rowsize + idx000[0]);
v001 = vecdata.Get(idx001[2] * planesize + idx001[1] * rowsize + idx001[0]);
v010 = vecdata.Get(idx010[2] * planesize + idx010[1] * rowsize + idx010[0]);
v011 = vecdata.Get(idx011[2] * planesize + idx011[1] * rowsize + idx011[0]);
v100 = vecdata.Get(idx100[2] * planesize + idx100[1] * rowsize + idx100[0]);
v101 = vecdata.Get(idx101[2] * planesize + idx101[1] * rowsize + idx101[0]);
v110 = vecdata.Get(idx110[2] * planesize + idx110[1] * rowsize + idx110[0]);
v111 = vecdata.Get(idx111[2] * planesize + idx111[1] * rowsize + idx111[0]);
// Interpolation in X
vtkm::Vec<FieldType, 3> v00, v01, v10, v11;
FieldType a = pos[0] - static_cast<FieldType>(floor(pos[0]));
v00[0] = (1.0f - a) * v000[0] + a * v001[0];
v00[1] = (1.0f - a) * v000[1] + a * v001[1];
v00[2] = (1.0f - a) * v000[2] + a * v001[2];
v01[0] = (1.0f - a) * v010[0] + a * v011[0];
v01[1] = (1.0f - a) * v010[1] + a * v011[1];
v01[2] = (1.0f - a) * v010[2] + a * v011[2];
v10[0] = (1.0f - a) * v100[0] + a * v101[0];
v10[1] = (1.0f - a) * v100[1] + a * v101[1];
v10[2] = (1.0f - a) * v100[2] + a * v101[2];
v11[0] = (1.0f - a) * v110[0] + a * v111[0];
v11[1] = (1.0f - a) * v110[1] + a * v111[1];
v11[2] = (1.0f - a) * v110[2] + a * v111[2];
// Interpolation in Y
vtkm::Vec<FieldType, 3> v0, v1;
a = pos[1] - static_cast<FieldType>(floor(pos[1]));
v0[0] = (1.0f - a) * v00[0] + a * v01[0];
v0[1] = (1.0f - a) * v00[1] + a * v01[1];
v0[2] = (1.0f - a) * v00[2] + a * v01[2];
v1[0] = (1.0f - a) * v10[0] + a * v11[0];
v1[1] = (1.0f - a) * v10[1] + a * v11[1];
v1[2] = (1.0f - a) * v10[2] + a * v11[2];
// Interpolation in Z
vtkm::Vec<FieldType, 3> v;
a = pos[2] - static_cast<FieldType>(floor(pos[2]));
v[0] = (1.0f - a) * v0[0] + v1[0];
v[1] = (1.0f - a) * v0[1] + v1[1];
v[2] = (1.0f - a) * v0[2] + v1[2];
return v;
}
}
/// \brief Compute the streamline
template <typename FieldType, typename DeviceAdapter>
class StreamLineFilterUniformGrid
{
public:
struct IsUnity
{
template <typename T>
VTKM_EXEC_CONT bool operator()(const T& x) const
{
return x == T(1);
}
};
using FieldHandle = vtkm::cont::ArrayHandle<vtkm::Vec<FieldType, 3>>;
using FieldPortalConstType =
typename FieldHandle::template ExecutionTypes<DeviceAdapter>::PortalConst;
class MakeStreamLines : public vtkm::worklet::WorkletMapField
{
public:
using ControlSignature = void(FieldIn<IdType> seedId,
FieldIn<> position,
WholeArrayOut<IdComponentType> numIndices,
WholeArrayOut<IdComponentType> validPoint,
WholeArrayOut<Vec3> streamLines);
using ExecutionSignature = void(_1, _2, _3, _4, _5, VisitIndex);
using InputDomain = _1;
using ScatterType = vtkm::worklet::ScatterUniform<2>;
FieldPortalConstType field;
const vtkm::Id3 vdims;
const vtkm::Id maxsteps;
const FieldType timestep;
const vtkm::Id planesize;
const vtkm::Id rowsize;
const vtkm::Id streammode;
VTKM_CONT
MakeStreamLines(const FieldType tStep,
const vtkm::Id sMode,
const vtkm::Id nSteps,
const vtkm::Id3 dims,
FieldPortalConstType fieldArray)
: field(fieldArray)
, vdims(dims)
, maxsteps(nSteps)
, timestep(tStep)
, planesize(dims[0] * dims[1])
, rowsize(dims[0])
, streammode(sMode)
{
}
template <typename IdComponentPortalType, typename FieldVec3PortalType>
VTKM_EXEC void operator()(vtkm::Id& seedId,
vtkm::Vec<FieldType, 3>& seedPos,
IdComponentPortalType& numIndices,
IdComponentPortalType& validPoint,
FieldVec3PortalType& slLists,
vtkm::IdComponent visitIndex) const
{
// Set initial offset into the output streams array
vtkm::Vec<FieldType, 3> pos = seedPos;
vtkm::Vec<FieldType, 3> pre_pos = seedPos;
// Forward tracing
if (visitIndex == 0 && (streammode == vtkm::worklet::internal::FORWARD ||
streammode == vtkm::worklet::internal::BOTH))
{
vtkm::Id index = (seedId * 2) * maxsteps;
bool done = false;
vtkm::Id step = 0;
validPoint.Set(index, 1);
slLists.Set(index++, pos);
while (done != true && step < maxsteps)
{
vtkm::Vec<FieldType, 3> vdata, adata, bdata, cdata, ddata;
vdata = internal::VecDataAtPos<FieldType, FieldPortalConstType>(
pos, vdims, planesize, rowsize, field);
for (vtkm::IdComponent d = 0; d < 3; d++)
{
adata[d] = timestep * vdata[d];
pos[d] += adata[d] / 2.0f;
}
vdata = internal::VecDataAtPos<FieldType, FieldPortalConstType>(
pos, vdims, planesize, rowsize, field);
for (vtkm::IdComponent d = 0; d < 3; d++)
{
bdata[d] = timestep * vdata[d];
pos[d] += bdata[d] / 2.0f;
}
vdata = internal::VecDataAtPos<FieldType, FieldPortalConstType>(
pos, vdims, planesize, rowsize, field);
for (vtkm::IdComponent d = 0; d < 3; d++)
{
cdata[d] = timestep * vdata[d];
pos[d] += cdata[d] / 2.0f;
}
vdata = internal::VecDataAtPos<FieldType, FieldPortalConstType>(
pos, vdims, planesize, rowsize, field);
for (vtkm::IdComponent d = 0; d < 3; d++)
{
ddata[d] = timestep * vdata[d];
pos[d] += (adata[d] + (2.0f * bdata[d]) + (2.0f * cdata[d]) + ddata[d]) / 6.0f;
}
if (pos[0] < 0.0f || pos[0] > static_cast<FieldType>(vdims[0]) || pos[1] < 0.0f ||
pos[1] > static_cast<FieldType>(vdims[1]) || pos[2] < 0.0f ||
pos[2] > static_cast<FieldType>(vdims[2]))
{
pos = pre_pos;
done = true;
}
else
{
validPoint.Set(index, 1);
slLists.Set(index++, pos);
pre_pos = pos;
}
step++;
}
numIndices.Set(seedId * 2, static_cast<vtkm::IdComponent>(step));
}
// Backward tracing
if (visitIndex == 1 && (streammode == vtkm::worklet::internal::BACKWARD ||
streammode == vtkm::worklet::internal::BOTH))
{
vtkm::Id index = (seedId * 2 + 1) * maxsteps;
bool done = false;
vtkm::Id step = 0;
validPoint.Set(index, 1);
slLists.Set(index++, pos);
while (done != true && step < maxsteps)
{
vtkm::Vec<FieldType, 3> vdata, adata, bdata, cdata, ddata;
vdata = internal::VecDataAtPos<FieldType, FieldPortalConstType>(
pos, vdims, planesize, rowsize, field);
for (vtkm::IdComponent d = 0; d < 3; d++)
{
adata[d] = timestep * (0.0f - vdata[d]);
pos[d] += adata[d] / 2.0f;
}
vdata = internal::VecDataAtPos<FieldType, FieldPortalConstType>(
pos, vdims, planesize, rowsize, field);
for (vtkm::IdComponent d = 0; d < 3; d++)
{
bdata[d] = timestep * (0.0f - vdata[d]);
pos[d] += bdata[d] / 2.0f;
}
vdata = internal::VecDataAtPos<FieldType, FieldPortalConstType>(
pos, vdims, planesize, rowsize, field);
for (vtkm::IdComponent d = 0; d < 3; d++)
{
cdata[d] = timestep * (0.0f - vdata[d]);
pos[d] += cdata[d] / 2.0f;
}
vdata = internal::VecDataAtPos<FieldType, FieldPortalConstType>(
pos, vdims, planesize, rowsize, field);
for (vtkm::IdComponent d = 0; d < 3; d++)
{
ddata[d] = timestep * (0.0f - vdata[d]);
pos[d] += (adata[d] + (2.0f * bdata[d]) + (2.0f * cdata[d]) + ddata[d]) / 6.0f;
}
if (pos[0] < 0.0f || pos[0] > static_cast<FieldType>(vdims[0]) || pos[1] < 0.0f ||
pos[1] > static_cast<FieldType>(vdims[1]) || pos[2] < 0.0f ||
pos[2] > static_cast<FieldType>(vdims[2]))
{
pos = pre_pos;
done = true;
}
else
{
validPoint.Set(index, 1);
slLists.Set(index++, pos);
pre_pos = pos;
}
step++;
}
numIndices.Set((seedId * 2) + 1, static_cast<vtkm::IdComponent>(step));
}
}
};
StreamLineFilterUniformGrid() {}
vtkm::cont::DataSet Run(const vtkm::cont::DataSet& InDataSet,
vtkm::Id streamMode,
vtkm::Id numSeeds,
vtkm::Id maxSteps,
FieldType timeStep)
{
using DeviceAlgorithm = vtkm::cont::Algorithm;
// Get information from input dataset
vtkm::cont::CellSetStructured<3> inCellSet;
InDataSet.GetCellSet(0).CopyTo(inCellSet);
vtkm::Id3 vdims = inCellSet.GetSchedulingRange(vtkm::TopologyElementTagPoint());
vtkm::cont::ArrayHandle<vtkm::Vec<FieldType, 3>> fieldArray;
InDataSet.GetField("vecData").GetData().CopyTo(fieldArray);
// Generate random seeds for starting streamlines
std::vector<vtkm::Vec<FieldType, 3>> seeds;
for (vtkm::Id i = 0; i < numSeeds; i++)
{
vtkm::Vec<FieldType, 3> seed;
seed[0] = static_cast<FieldType>(rand() % vdims[0]);
seed[1] = static_cast<FieldType>(rand() % vdims[1]);
seed[2] = static_cast<FieldType>(rand() % vdims[2]);
seeds.push_back(seed);
}
vtkm::cont::ArrayHandle<vtkm::Vec<FieldType, 3>> seedPosArray =
vtkm::cont::make_ArrayHandle(&seeds[0], numSeeds);
vtkm::cont::ArrayHandleCounting<vtkm::Id> seedIdArray(0, 1, numSeeds);
// Number of streams * number of steps * [forward, backward]
vtkm::Id numCells = numSeeds * 2;
vtkm::Id maxConnectivityLen = numCells * maxSteps;
// Stream array at max size will be filled with stream coordinates
vtkm::cont::ArrayHandle<vtkm::Vec<FieldType, 3>> streamArray;
streamArray.Allocate(maxConnectivityLen);
// NumIndices per polyline cell filled in by MakeStreamLines
vtkm::cont::ArrayHandle<vtkm::IdComponent> numIndices;
numIndices.Allocate(numCells);
// All cells are polylines
vtkm::cont::ArrayHandle<vtkm::UInt8> cellTypes;
cellTypes.Allocate(numCells);
vtkm::cont::ArrayHandleConstant<vtkm::UInt8> polyLineShape(vtkm::CELL_SHAPE_POLY_LINE,
numCells);
DeviceAlgorithm::Copy(polyLineShape, cellTypes);
// Possible maxSteps points but if less use stencil
vtkm::cont::ArrayHandle<vtkm::IdComponent> validPoint;
vtkm::cont::ArrayHandleConstant<vtkm::Id> zeros(0, maxConnectivityLen);
validPoint.Allocate(maxConnectivityLen);
DeviceAlgorithm::Copy(zeros, validPoint);
// Worklet to make the streamlines
MakeStreamLines makeStreamLines(
timeStep, streamMode, maxSteps, vdims, fieldArray.PrepareForInput(DeviceAdapter()));
using MakeStreamLinesDispatcher = vtkm::worklet::DispatcherMapField<MakeStreamLines>;
MakeStreamLinesDispatcher makeStreamLinesDispatcher(makeStreamLines);
makeStreamLinesDispatcher.Invoke(
seedIdArray, seedPosArray, numIndices, validPoint, streamArray);
// Size of connectivity based on size of returned streamlines
vtkm::cont::ArrayHandle<vtkm::IdComponent> numIndicesOut;
vtkm::IdComponent connectivityLen = DeviceAlgorithm::ScanExclusive(numIndices, numIndicesOut);
// Connectivity is sequential
vtkm::cont::ArrayHandleCounting<vtkm::Id> connCount(0, 1, connectivityLen);
vtkm::cont::ArrayHandle<vtkm::Id> connectivity;
DeviceAlgorithm::Copy(connCount, connectivity);
// Compact the stream array so it only has valid points
vtkm::cont::ArrayHandle<vtkm::Vec<FieldType, 3>> coordinates;
DeviceAlgorithm::CopyIf(streamArray, validPoint, coordinates, IsUnity());
// Create the output data set
vtkm::cont::DataSet OutDataSet;
vtkm::cont::CellSetExplicit<> outCellSet;
outCellSet.Fill(coordinates.GetNumberOfValues(), cellTypes, numIndices, connectivity);
OutDataSet.AddCellSet(outCellSet);
OutDataSet.AddCoordinateSystem(vtkm::cont::CoordinateSystem("coordinates", coordinates));
return OutDataSet;
}
};
}
}
#endif // vtk_m_worklet_StreamLineUniformGrid_h