vtk-m/vtkm/worklet/contourtree_augmented/Mesh_DEM_Triangulation.h
Kenneth Moreland bddad9b386 Remove TryExecute from filters
Now that the dispatcher does its own TryExecute, filters do not need to
do that. This change requires all worklets called by filters to be able
to execute without knowing the device a priori.
2018-10-16 15:59:53 -06:00

365 lines
13 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//
// Copyright 2014 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Copyright 2014 UT-Battelle, LLC.
// Copyright 2014 Los Alamos National Security.
//
// Under the terms of Contract DE-NA0003525 with NTESS,
// the U.S. Government retains certain rights in this software.
//
// Under the terms of Contract DE-AC52-06NA25396 with Los Alamos National
// Laboratory (LANL), the U.S. Government retains certain rights in
// this software.
//============================================================================
// Copyright (c) 2018, The Regents of the University of California, through
// Lawrence Berkeley National Laboratory (subject to receipt of any required approvals
// from the U.S. Dept. of Energy). All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// (1) Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// (2) Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// (3) Neither the name of the University of California, Lawrence Berkeley National
// Laboratory, U.S. Dept. of Energy nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
// INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
// OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
//
//=============================================================================
//
// This code is an extension of the algorithm presented in the paper:
// Parallel Peak Pruning for Scalable SMP Contour Tree Computation.
// Hamish Carr, Gunther Weber, Christopher Sewell, and James Ahrens.
// Proceedings of the IEEE Symposium on Large Data Analysis and Visualization
// (LDAV), October 2016, Baltimore, Maryland.
//
// The PPP2 algorithm and software were jointly developed by
// Hamish Carr (University of Leeds), Gunther H. Weber (LBNL), and
// Oliver Ruebel (LBNL)
//==============================================================================
//
// Parallel Peak Pruning v. 2.0
//
// Mesh_2D_DEM_Triangulation.h - a 2D regular mesh
//
//==============================================================================
//
// COMMENTS:
//
// This is an abstraction to separate out the mesh from the graph algorithm
// that we will be executing.
//
// In this version, we will sort the values up front, and then keep track of
// them using indices only, without looking up their values. This should
// simplify several parts of code significantly, and reduce the memory bandwidth.
// Of course, in moving to 64-bit indices, we will not necessarily see gains.
//
//==============================================================================
#ifndef vtkm_worklet_contourtree_augmented_mesh_dem_triangulation_h
#define vtkm_worklet_contourtree_augmented_mesh_dem_triangulation_h
#include <vtkm/cont/Algorithm.h>
#include <vtkm/cont/ArrayCopy.h>
#include <vtkm/cont/ArrayHandle.h>
#include <vtkm/cont/ArrayHandleIndex.h>
#include <vtkm/cont/ArrayHandlePermutation.h>
#include <vtkm/worklet/Invoker.h>
#include <vtkm/worklet/contourtree_augmented/PrintVectors.h>
#include <vtkm/worklet/contourtree_augmented/Types.h>
#include <vtkm/worklet/contourtree_augmented/mesh_dem/SimulatedSimplicityComperator.h>
#include <vtkm/worklet/contourtree_augmented/mesh_dem/SortIndices.h>
//Define namespace alias for the freudenthal types to make the code a bit more readable
namespace mesh_dem_ns = vtkm::worklet::contourtree_augmented::mesh_dem;
namespace vtkm
{
namespace worklet
{
namespace contourtree_augmented
{
template <typename T, typename StorageType>
class Mesh_DEM_Triangulation
{
public:
// common mesh size parameters
vtkm::Id nVertices, nLogSteps;
// Define dimensionality of the mesh
vtkm::Id nDims;
// Array with the sorted order of the mesh vertices
IdArrayType sortOrder;
// Array with the sort index for each vertex
// i.e. the inverse permutation for sortOrder
IdArrayType sortIndices;
//empty constructor
Mesh_DEM_Triangulation()
: nVertices(0)
, nLogSteps(0)
, nDims(2)
{
}
// sorts the data and initializes the sortIndex & indexReverse
void SortData(const vtkm::cont::ArrayHandle<T, StorageType>& values);
//routine that dumps out the contents of the mesh
void DebugPrint(const char* message, const char* fileName, long lineNum);
protected:
virtual void DebugPrintExtends() = 0;
virtual void DebugPrintValues(const vtkm::cont::ArrayHandle<T, StorageType>& values) = 0;
}; // class Mesh_DEM_Triangulation
template <typename T, typename StorageType>
class Mesh_DEM_Triangulation_2D : public Mesh_DEM_Triangulation<T, StorageType>
{
public:
// 2D mesh size parameters
vtkm::Id nRows, nCols;
// Maximum outdegree
static constexpr int MAX_OUTDEGREE = 3;
// empty constructor
Mesh_DEM_Triangulation_2D()
: Mesh_DEM_Triangulation<T, StorageType>()
, nRows(0)
, nCols(0)
{
this->nDims = 2;
}
// base constructor
Mesh_DEM_Triangulation_2D(vtkm::Id nrows, vtkm::Id ncols)
: Mesh_DEM_Triangulation<T, StorageType>()
, nRows(nrows)
, nCols(ncols)
{
this->nDims = 2;
this->nVertices = nRows * nCols;
// compute the number of log-jumping steps (i.e. lg_2 (nVertices))
this->nLogSteps = 1;
for (vtkm::Id shifter = this->nVertices; shifter > 0; shifter >>= 1)
this->nLogSteps++;
}
protected:
virtual void DebugPrintExtends();
virtual void DebugPrintValues(const vtkm::cont::ArrayHandle<T, StorageType>& values);
}; // class Mesh_DEM_Triangulation_2D
template <typename T, typename StorageType>
class Mesh_DEM_Triangulation_3D : public Mesh_DEM_Triangulation<T, StorageType>
{
public:
// 2D mesh size parameters
vtkm::Id nRows, nCols, nSlices;
// Maximum outdegree
static constexpr int MAX_OUTDEGREE = 6; // True for Freudenthal and Marching Cubes
// empty constructor
Mesh_DEM_Triangulation_3D()
: Mesh_DEM_Triangulation<T, StorageType>()
, nRows(0)
, nCols(0)
, nSlices(0)
{
this->nDims = 3;
}
// base constructor
Mesh_DEM_Triangulation_3D(vtkm::Id nrows, vtkm::Id ncols, vtkm::Id nslices)
: Mesh_DEM_Triangulation<T, StorageType>()
, nRows(nrows)
, nCols(ncols)
, nSlices(nslices)
{
this->nDims = 3;
this->nVertices = nRows * nCols * nSlices;
// compute the number of log-jumping steps (i.e. lg_2 (nVertices))
this->nLogSteps = 1;
for (vtkm::Id shifter = this->nVertices; shifter > 0; shifter >>= 1)
this->nLogSteps++;
}
protected:
virtual void DebugPrintExtends();
virtual void DebugPrintValues(const vtkm::cont::ArrayHandle<T, StorageType>& values);
}; // class Mesh_DEM_Triangulation_3D
// sorts the data and initialises the sortIndices & sortOrder
template <typename T, typename StorageType>
void Mesh_DEM_Triangulation<T, StorageType>::SortData(
const vtkm::cont::ArrayHandle<T, StorageType>& values)
{
// Define namespace alias for mesh dem worklets
namespace mesh_dem_worklets = vtkm::worklet::contourtree_augmented::mesh_dem;
// Make sure that the values have the correct size
assert(values.GetNumberOfValues() == nVertices);
// Just in case, make sure that everything is cleaned up
sortIndices.ReleaseResources();
sortOrder.ReleaseResources();
// allocate memory for the sort arrays
sortOrder.Allocate(nVertices);
sortIndices.Allocate(nVertices);
// now sort the sort order vector by the values, i.e,. initialize the sortOrder member variable
vtkm::cont::ArrayHandleIndex initVertexIds(nVertices); // create sequence 0, 1, .. nVertices
vtkm::cont::ArrayCopy(initVertexIds, sortOrder);
vtkm::cont::Algorithm::Sort(sortOrder,
mesh_dem::SimulatedSimplicityIndexComparator<T, StorageType>(values));
// now set the index lookup, i.e., initialize the sortIndices member variable
// In serial this would be
// for (indexType vertex = 0; vertex < nVertices; vertex++)
// sortIndices[sortOrder[vertex]] = vertex;
mesh_dem_worklets::SortIndices sortIndicesWorklet;
vtkm::worklet::Invoker invoke;
invoke(sortIndicesWorklet, sortOrder, sortIndices);
// Debug print statement
DebugPrint("Data Sorted", __FILE__, __LINE__);
DebugPrintValues(values);
} // SortData()
template <typename T, typename StorageType>
void Mesh_DEM_Triangulation<T, StorageType>::DebugPrint(const char* message,
const char* fileName,
long lineNum)
{ // DebugPrint()
#ifdef DEBUG_PRINT
std::cout << "------------------------------------------------------" << std::endl;
std::cout << std::setw(30) << std::left << fileName << ":" << std::right << std::setw(4)
<< lineNum << std::endl;
std::cout << std::left << std::string(message) << std::endl;
std::cout << "Mesh Contains: " << std::endl;
std::cout << "------------------------------------------------------" << std::endl;
//DebugPrintExtents();
printLabel("nVertices");
printIndexType(nVertices);
std::cout << std::endl;
printLabel("nLogSteps");
printIndexType(nLogSteps);
std::cout << std::endl;
printIndices("Sort Indices", sortIndices);
printIndices("Sort Order", sortOrder);
std::cout << std::endl;
#else
// Avoid unused parameter warning
(void)message;
(void)fileName;
(void)lineNum;
#endif
} // DebugPrint()
// print mesh extends for 2D mesh
template <typename T, typename StorageType>
void Mesh_DEM_Triangulation_2D<T, StorageType>::DebugPrintExtends()
{
printLabel("nRows");
printIndexType(nRows);
std::cout << std::endl;
printLabel("nCols");
printIndexType(nCols);
std::cout << std::endl;
} // DebugPrintExtends for 2D
// print mesh extends for 3D mesh
template <typename T, typename StorageType>
void Mesh_DEM_Triangulation_3D<T, StorageType>::DebugPrintExtends()
{
printLabel("nRows");
printIndexType(nRows);
std::cout << std::endl;
printLabel("nCols");
printIndexType(nCols);
std::cout << std::endl;
printLabel("nSlices");
printIndexType(nSlices);
std::cout << std::endl;
}
template <typename T, typename StorageType>
void Mesh_DEM_Triangulation_2D<T, StorageType>::DebugPrintValues(
const vtkm::cont::ArrayHandle<T, StorageType>& values)
{
#ifdef DEBUG_PRINT
if (nCols > 0)
{
printLabelledDataBlock<T, StorageType>("Value", values, nCols);
printSortedValues("Sorted Values", values, this->sortOrder);
}
printHeader(values.GetNumberOfValues());
#else
// Avoid unused parameter warning
(void)values;
#endif
} // DebugPrintValues
template <typename T, typename StorageType>
void Mesh_DEM_Triangulation_3D<T, StorageType>::DebugPrintValues(
const vtkm::cont::ArrayHandle<T, StorageType>& values)
{
#ifdef DEBUG_PRINT
if (nCols > 0)
{
printLabelledDataBlock<T, StorageType>("Value", values, nCols);
}
printHeader(values.GetNumberOfValues());
#else
// Avoid unused parameter warning
(void)values;
#endif
} // DebugPrintValues
} // namespace contourtree_augmented
} // worklet
} // vtkm
#include "vtkm/worklet/contourtree_augmented/mesh_dem_meshtypes/Freudenthal_2D_Triangulation.h" // include Mesh_DEM_Triangulation_2D_Freudenthal
#include "vtkm/worklet/contourtree_augmented/mesh_dem_meshtypes/Freudenthal_3D_Triangulation.h" // include Mesh_DEM_Triangulation_3D_Freudenthal
#include "vtkm/worklet/contourtree_augmented/mesh_dem_meshtypes/MarchingCubes_3D_Triangulation.h" // include Mesh_DEM_Triangulation_3D_MarchinCubes
#endif